1.在(1+x)•(1+2x)5的展開(kāi)式中,x4的系數(shù)為160 (用數(shù)字作答)

分析 根據(jù)(1+x)•(1+2x)5的展開(kāi)式中,含x4的項(xiàng)是第一個(gè)因式取1和x時(shí),后一個(gè)因式應(yīng)取x4和x3項(xiàng),求出它們的系數(shù)和即可.

解答 解:在(1+x)•(1+2x)5的展開(kāi)式中:
當(dāng)?shù)谝粋(gè)因式取1時(shí),則后一個(gè)因式取含x4的項(xiàng)為
24${C}_{5}^{4}$•x4=80x4;
當(dāng)?shù)谝粋(gè)因式取x時(shí),則后一個(gè)因式取含x3的項(xiàng)為
23${C}_{5}^{3}$•x3=80x3;
所以展開(kāi)式中x4的系數(shù)為:80+80=160.
故答案為:160.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.平面上動(dòng)點(diǎn)P到點(diǎn)F(0,1)的距離比它到直線(xiàn)l:y=-2的距離小1.
(Ⅰ) 求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過(guò)點(diǎn)F作直線(xiàn)與曲線(xiàn)C交于兩點(diǎn)A,B,與直線(xiàn)l交于點(diǎn)M,求|MA|•|MB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知等差數(shù)列{an}的公差d≠0,其前n項(xiàng)和為Sn,若S9=99,且a4,a7,a12成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若${T_n}=\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$,證明:${T_n}<\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)$f(x)=-aln(x+1)+\frac{a+1}{x+1}-a-1$(a∈R)
(1)討論f(x)在(0,+∞)上的單調(diào)性;
(2)若對(duì)任意的正整數(shù)n都有${(1+\frac{1}{n})^{n-a}}>e$成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,則輸出S=(  )
A.$\frac{5}{11}$B.$\frac{13}{9}$C.$\frac{16}{11}$D.$\frac{17}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6..已知函數(shù)f(x)=aex(a≠0),g(x)=x2
(Ⅰ)若曲線(xiàn)c1:y=f(x)與曲線(xiàn)c2:y=g(x)存在公切線(xiàn),求a最大值.
(Ⅱ)當(dāng)a=1時(shí),F(xiàn)(x)=f(x)-bg(x)-cx-1,且F(2)=0,若F(x)在(0,2)內(nèi)有零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在等差數(shù)列{an}中,a1=-2008,其前n項(xiàng)和為Sn,若$\frac{{S}_{12}}{12}$-$\frac{{S}_{10}}{10}$=2,則S2008的值等于-2008.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如表是某位文科生連續(xù)5次月考的歷史、政治的成績(jī),結(jié)果如下:
月份91011121
歷史(x 分)7981838587
政治(y 分)7779798283
(Ⅰ)求該生5次月考?xì)v史成績(jī)的平均分和政治成績(jī)的方差;
(Ⅱ)一般來(lái)說(shuō),學(xué)生的歷史成績(jī)與政治成績(jī)有較強(qiáng)的線(xiàn)性相關(guān)關(guān)系,根據(jù)上表提供的數(shù)據(jù),求兩個(gè)變量x,y的線(xiàn)性回歸方程.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{x}2}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,$\overline{x}$,$\overline{y}$表示樣本均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)$f(x)=3sin(ωx+\frac{π}{3})$的最小正周期為π,將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個(gè)所得圖象對(duì)應(yīng)的函數(shù)為y=g(x),則關(guān)于函數(shù)為y=g(x)的性質(zhì),下列說(shuō)法不正確的是( 。
A.g(x)為奇函數(shù)B.關(guān)于直線(xiàn)$x=\frac{π}{2}$對(duì)稱(chēng)
C.關(guān)于點(diǎn)(π,0)對(duì)稱(chēng)D.在$(-\frac{π}{6},\frac{π}{4})$上遞增

查看答案和解析>>

同步練習(xí)冊(cè)答案