A. | g(x)為奇函數(shù) | B. | 關(guān)于直線$x=\frac{π}{2}$對稱 | ||
C. | 關(guān)于點(diǎn)(π,0)對稱 | D. | 在$(-\frac{π}{6},\frac{π}{4})$上遞增 |
分析 由已知利用三角函數(shù)周期公式可求ω,利用函數(shù)y=Asin(ωx+φ)的圖象變換可求g(x),利用正弦函數(shù)的圖象和性質(zhì)逐一判斷各個(gè)選項(xiàng)即可得解.
解答 解:∵$f(x)=3sin(ωx+\frac{π}{3})$的最小正周期為π,
∴π=$\frac{2π}{ω}$,解得:ω=2,
∴f(x=3sin(2x+$\frac{π}{3}$),
∴將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個(gè)所得圖象對應(yīng)的函數(shù)為y=g(x)=3sin[2(x-$\frac{π}{6}$)+$\frac{π}{3}$]=3sin2x,
對于A,g(-x)=3sin(-2x)=-3sin2x=-g(x),正確;
對于B,由于g($\frac{π}{2}$)=3sin(2×$\frac{π}{2}$)=0≠±3,故錯(cuò)誤;
對于C,令2x=kπ,k∈Z,解得:x=$\frac{1}{2}$kπ,k∈Z,當(dāng)k=2時(shí),可得關(guān)于點(diǎn)(π,0)對稱,正確;
對于D,令2kπ-$\frac{π}{2}$≤2x≤2kπ+$\frac{π}{2}$,k∈Z,解得:kπ-$\frac{π}{4}$≤x≤kπ+$\frac{π}{4}$,k∈Z,
可得,當(dāng)k=0時(shí),函數(shù)單調(diào)遞增區(qū)間為:[-$\frac{π}{4}$,$\frac{π}{4}$],由于$(-\frac{π}{6},\frac{π}{4})$?[-$\frac{π}{4}$,$\frac{π}{4}$],故正確.
故選:B.
點(diǎn)評 本題主要考查了三角函數(shù)周期公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象和性質(zhì),考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{8}{3}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com