【題目】若f(x)是定義在(0,+∞)上的增函數(shù),且對一切x,y>0,滿足.
(1)求f(1)的值;
(2)若f(6)=1,解不等式f(x+3)-f()<2.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在R上的奇函數(shù),當(dāng)時,.
(1)求的值;
(2)求的解析式;
(3)解關(guān)于的不等式,結(jié)果用集合或區(qū)間表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與拋物線相交于不同的兩點.
(1)如果直線過拋物線的焦點,求的值;
(2)如果 ,證明:直線必過一定點,并求出該定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1的底面是等腰直角三角形,AB=AC=2,四棱錐C﹣ABB1A1的體積等于4.
(1)求AA1的值;
(2)求C1到平面A1B1C的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若實數(shù)x、y、m滿足|x﹣m|<|y﹣m|,則稱x比y接近m.
(1)若2x比1接近3,求x的取值范圍;
(2)已知函數(shù)f(x)定義域D=(﹣∞,0)∪(0,1)∪(1,3)∪(3,+∞),對于任意的x∈D,f(x)等于x2﹣2x與x中接近0的那個值,寫出函數(shù)f(x)的解析式,若關(guān)于x的方程f(x)﹣a=0有兩個不同的實數(shù)根,求出a的取值范圍;
(3)已知a,b∈R,m>0且a≠b,求證: 比 接近0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx﹣ ax2﹣bx,若x=1是f(x)的極大值點,則a的取值范圍為( )
A.(﹣1,0)
B.(﹣1,+∞)
C.(0,+∞)
D.(﹣∞,﹣1)∪(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在實數(shù)集R上的函數(shù),且y=f(x+1)是偶函數(shù),當(dāng)x≥1時,f(x)=2x﹣1,則f(),f(),f()的大小關(guān)系是( 。
A. f()<f()<f() B. f()<f()<f()
C. f()<f()<f() D. f()<f()<f()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為棱長的正方體, 為棱的中點.
(1)求三棱錐的體積;
(2)求證: 平面.
【答案】(1);(2)見解析.
【解析】試題分析:(1)高為ED,再根據(jù)錐體體積公式計算體積(2)連接交于點,根據(jù)三角形中位線性質(zhì)得,再根據(jù)線面平行判定定理得結(jié)論
試題解析:(1)體積
(2)連接交于點,則為的中位線,即,
又面, 面,得到 平面.
【題型】解答題
【結(jié)束】
18
【題目】已知拋物線: 的焦點為圓的圓心.
(1)求拋物線的標(biāo)準方程;
(2)若斜率的直線過拋物線的焦點與拋物線相交于兩點,求弦長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com