9.在空間中,下列命題中不正確的是(  )
A.若兩個平面有一個公共點,則它們有無數(shù)個公共點
B.任意兩條直線能確定一個平面
C.若點A既在平面α內(nèi),又在平面β內(nèi),則α與β相交于直線b,且點A在直線b上
D.若已知四個點不共面,則其中任意三點不共線

分析 在A中,有公理二知它們有無數(shù)個公共點;在B中,由公理三知任意兩條直線不能確定一個平面;在C中,由公理二知α與β相交于直線b,且點A在直線b上;在D中,假設(shè)任意三點共線,由公理三知四個點共面,與原題意不符,從而得到四個點不共面,則其中任意三點不共線.

解答 解:在A中,若兩個平面有一個公共點,則有公理二知它們有無數(shù)個公共點,故A正確;
在B中,由公理三知,兩條平行線或兩條相交線能確定一個平南,
兩條異面直線不能確定一個平面,
∴任意兩條直線不能確定一個平面,故B錯誤;
在C中,若點A既在平面α內(nèi),又在平面β內(nèi),
則由公理二知α與β相交于直線b,且點A在直線b上,故C正確;
在D中,假設(shè)任意三點共線
則根據(jù)“經(jīng)過一條直線和直線外一點有且只有一個平面”,
所以四個點共面,與原題意不符,
所以四個點不共面,則其中任意三點不共線,故D正確.
故選:B.

點評 本題考查命題真假的判斷,是基礎(chǔ)題,解題時要認真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A、B、C所對的邊分別為a、b、c.已知acosAcosB-bsin2A-ccosA=2bcosB.
(1)求B;
(2)若$b=\sqrt{7}a,{S_{△ABC}}=2\sqrt{3}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.lg2+lg5=1;${2^{{{log}_2}3}}-{8^{\frac{1}{3}}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知命題p:平面內(nèi)垂直于同一直線的兩條直線不平行,命題q:平面內(nèi)垂直于同一直線的兩條直線平行.請你寫出以上命題的“p或q”“p且q”“非p”形式的命題,并判斷其真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.橢圓的短軸長為6,焦距為8,則它的長軸長等于10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若a=2,則(1+ax)5的展開式中x3項的系數(shù)為80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓Cn:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=n(a>b>1,n∈N*),F(xiàn)1,F(xiàn)2是橢圓C4的焦點,A(2,$\sqrt{2}$)是橢圓C4上一點,且$\overrightarrow{A{F}_{2}}$?$\overrightarrow{{F}_{1}{F}_{2}}$=0;
(1)求Cn的離心率并求出C1的方程;
(2)P為橢圓C2上任意一點,直線PF1交橢圓C4于點E,F(xiàn),直線PF2交橢圓C4于點M,N,設(shè)直線PF1的斜率為k1,直線PF2的斜率為k2;
(i)求證:k1k2=-$\frac{1}{2}$    
(ii)求|MN|?|EF|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知命題p:$\frac{{x}^{2}}{3-a}-\frac{{y}^{2}}{a-5}=1$可表示焦點在x軸上的雙曲線;命題q:若實數(shù)a,b滿足a>b,則a2>b2.則下列命題中:①p∨q②p∧q③(¬p)∨q④(¬p)∧(¬q)真命題的序號為(  )
A.B.③④C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知圓C:x2+y2=2,點P為直線$x-y+2\sqrt{2}=0$上任意一點,過點P的直線與圓C交于A,B兩點,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值為( 。
A.2B.2$\sqrt{2}$C.4D.4$\sqrt{2}$

查看答案和解析>>

同步練習冊答案