17.已知命題p:平面內(nèi)垂直于同一直線的兩條直線不平行,命題q:平面內(nèi)垂直于同一直線的兩條直線平行.請你寫出以上命題的“p或q”“p且q”“非p”形式的命題,并判斷其真假.

分析 根據(jù)復(fù)合命題的定義進行求解并判斷即可.

解答 解:“p或q”:平面內(nèi)垂直于同一直線的兩條直線不平行或平行.(真命題)…(5分)
“p且q”平面內(nèi)垂直于同一直線的兩條直線不平行或平行.(假命題)…(10分)
“非p”:平面內(nèi)垂直于同一直線的兩條直線平行.(真命題)…(16分)

點評 本題主要考查復(fù)合命題的求解和判斷,根據(jù)復(fù)合命題的定義是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=$\frac{ln|x|}{{x}^{2}}$的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知直線y=a(0<a<1)與函數(shù)f(x)=sinωx在y軸右側(cè)的前12個交點橫坐標依次為x1,x2,x3,…,x12,且x1=$\frac{π}{4}$,x2=$\frac{3π}{4}$,x3=$\frac{9π}{4}$,則x1+x2+x3+…+x12=66π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標系內(nèi),點A(0,1),B(0,-1),C(1,0),點P滿足$\overrightarrow{AP}•\overrightarrow{BP}=k|\overrightarrow{PC}{|^2}$.
(1)若k=2,求點P的軌跡方程;
(2)當k=0時,若$|λ\overrightarrow{AP}+\overrightarrow{BP}{|_{max}}=4$,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.“x>-2”是“(x+2)(x-3)<0”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)$y=\frac{lnx}{x}$的導(dǎo)數(shù)為( 。
A.$y=\frac{1-lnx}{x^2}$B.$y=\frac{1+lnx}{x^2}$C.$y=\frac{lnx-1}{x^2}$D.$y=\frac{x+lnx}{x^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在空間中,下列命題中不正確的是(  )
A.若兩個平面有一個公共點,則它們有無數(shù)個公共點
B.任意兩條直線能確定一個平面
C.若點A既在平面α內(nèi),又在平面β內(nèi),則α與β相交于直線b,且點A在直線b上
D.若已知四個點不共面,則其中任意三點不共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知拋物線C的頂點在原點,焦點為F(-3,0),C上一點P到焦點F的距離為9,則點P的一個坐標為(  )
A.(-3,6)B.(-3,6$\sqrt{2}$)C.(-6,6)D.(-6,6$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.將函數(shù)$f(x)=2sin(2x+\frac{π}{6})$的圖象向左平移$\frac{π}{6}$個單位,得到函數(shù)g(x)的圖象,則g(0)=2.

查看答案和解析>>

同步練習冊答案