分析 (Ⅰ)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間,從而求出函數(shù)的最小值;
(Ⅱ)a≤lnx+$\frac{1}{x}$(x≥1)恒成立,令g(x)=lnx+$\frac{1}{x}$,則a≤g(x)min(x≥1)恒成立;根據(jù)函數(shù)的單調性求出g(x)的最小值,從而求出a的范圍即可;
(Ⅲ)問題轉化為y=b和y=f(x)在(0,+∞)有兩個不同的交點,根據(jù)函數(shù)的單調性求出b的范圍即可.
解答 解:(Ⅰ)f(x)的定義域是(0,+∞),
f′(x)=1+lnx,
令f′(x)>0,解得:x>$\frac{1}{e}$,令f′(x)<0,解得:0<x<$\frac{1}{e}$,
故f(x)在(0,$\frac{1}{e}$)遞減,在($\frac{1}{e}$,+∞)遞增,
故f(x)min=f($\frac{1}{e}$)=$\frac{1}{e}$ln$\frac{1}{e}$=-$\frac{1}{e}$;
(Ⅱ)∵f(x)=xlnx,
當x≥1時,f(x)≥ax-1恒成立
?xlnx≥ax-1(x≥1)恒成立
?a≤lnx+$\frac{1}{x}$(x≥1)恒成立,
令g(x)=lnx+$\frac{1}{x}$,則a≤g(x)min(x≥1)恒成立;
∵g′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$,
∴當x≥1時,f′(x)≥0,
∴g(x)在[1,+∞)上單調遞增,
∴g(x)min=1,
∴a≤1,即實數(shù)a的取值范圍為(-∞,1].
(Ⅲ)若關于x的方程f(x)=b恰有兩個不相等的實數(shù)根,
即y=b和y=f(x)在(0,+∞)有兩個不同的交點,
由(Ⅰ)0<x<$\frac{1}{e}$時,f(x)<0,
f(x)在(0,$\frac{1}{e}$)遞減,在($\frac{1}{e}$,+∞)遞增,
f(x)min=f($\frac{1}{e}$)=$\frac{1}{e}$ln$\frac{1}{e}$=-$\frac{1}{e}$;
故-$\frac{1}{e}$<b<0時,滿足y=b和y=f(x)在(0,+∞)有兩個不同的交點,
即若關于x的方程f(x)=b恰有兩個不相等的實數(shù)根,則-$\frac{1}{e}$<b<0.
點評 本題考查函數(shù)恒成立問題,分離參數(shù)a是關鍵,考查等價轉化思想與構造函數(shù)思想,考查導數(shù)法判定函數(shù)單調性的應用及運算求解能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=sin$\frac{x}{2}$ | B. | y=|sin$\frac{x}{2}$| | C. | y=cos2x | D. | y=|sin2x| |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-2)∪(1,+∞) | B. | (-∞,-2)∪(1,2) | C. | (-∞,1)∪(2,+∞) | D. | (-1,1)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 48π | B. | 32$\sqrt{3}$π | C. | 18$\sqrt{3}$π | D. | 8$\sqrt{3}$π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈R,使sinx≠1 | B. | ?x∈R,使sinx<1 | C. | ?x∈R,使sinx<1 | D. | ?x∉R,使sinx≠1 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com