7.已知三棱錐P-ABC的底面是邊長為3的正三角形,PA⊥底面ABC,且PA=6,則該三棱錐的外接球的體積是( 。
A.48πB.32$\sqrt{3}$πC.18$\sqrt{3}$πD.8$\sqrt{3}$π

分析 過△ABC的中心作平面ABC的垂線,利用勾股定理計算球的半徑,即可得出球的體積.

解答 解:設(shè)D為△ABC的中心,O為外接球的球心,E為PA的中點.
則OD⊥平面ABC,OA=OP,
從而OE⊥PA,OD∥PA,
因為AB=BC=CA=3,則AD=$\frac{2}{3}$×AB×sin 60°=$\sqrt{3}$.
∵PA=6,則OD=EA=3.所以O(shè)A=$\sqrt{A{D}^{2}+O{D}^{2}}$=2$\sqrt{3}$.
三棱錐的外接球的體積V=$\frac{4}{3}$π×OA3=32$\sqrt{3}$π,
故選B.

點評 本題考查了球與棱錐的位置關(guān)系,幾何體的體積計算,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知正方體ABCD-A′B′C′D′中:BC′與CD′所成的角為600

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=xlnx.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若對所有x≥1都有f(x)≥ax-1,求實數(shù)a的取值范圍.
(Ⅲ)若關(guān)于x的方程f(x)=b恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知向量$\overrightarrow{a}$=(2,4),$\overrightarrow$=(x,-6),若向量$\overrightarrow{a}$與$\overrightarrow$共線,則實數(shù)x的值為( 。
A.-3B.-12C.3D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.一條河的兩岸平行,河水從西向東流去,一艘船從河的南岸某處出發(fā)駛向北岸.已知船的速度|v1|=20km/h,水流速度|v2|=10km/h,要使該船行駛的航程最短,則船速v1的方向與河道南岸上游的夾角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.四棱錐P-ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,過點B作直線l∥PD,Q為直線l上一動點.
(1)求證:QP⊥AC;
(2)當面PAC⊥面QAC時,求三棱錐Q-ACP的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.一組數(shù)據(jù)8,12,10,11,9的均值為10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.p>0是拋物線y2=2px的焦點落在x軸上的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若f'(x)=3,則$\underset{lim}{m→0}$$\frac{f({x}_{0}-m)-f({x}_{0})}{3m}$等于( 。
A.3B.$\frac{1}{3}$C.-1D.1

查看答案和解析>>

同步練習冊答案