16.20世紀70年代,流行一種游戲---角谷猜想,規(guī)則如下:任意寫出一個自然數(shù)n,按照以下的規(guī)律進行變換:如果n是個奇數(shù),則下一步變成3n+1;如果n是個偶數(shù),則下一步變成$\frac{n}{2}$,這種游戲的魅力在于無論你寫出一個多么龐大的數(shù)字,最后必然會落在谷底,更準確的說是落入底部的4-2-1循環(huán),而永遠也跳不出這個圈子,下列程序框圖就是根據(jù)這個游戲而設計的,如果輸出的i值為6,則輸入的n值為( 。
A.5B.16C.5或32D.4或5或32

分析 根據(jù)各個選項n的值,模擬程序的運行,依次驗證程序的輸出的i的值是否為6即可得解.

解答 解:模擬程序的運行,由題意可得
當輸入的n的值為5時,
i=1,第1次循環(huán),n=5,n為奇數(shù),n=16
i=2,第2次循環(huán),n為偶數(shù),n=8
i=3,第3次循環(huán),n為偶數(shù),n=4
i=4,第4次循環(huán),n為偶數(shù),n=2
i=5,第5次循環(huán),n為偶數(shù),n=1
i=6,滿足條件n=1,退出循環(huán),輸出i的值為6.符合題意.
當輸入的n的值為16時,
i=1,第1次循環(huán),n=16,n為偶數(shù),n=8
i=2,第2次循環(huán),n為偶數(shù),n=4
i=3,第3次循環(huán),n為偶數(shù),n=2
i=4,第4次循環(huán),n為偶數(shù),n=1
i=5,滿足條件n=1,退出循環(huán),輸出i的值為5.不符合題意.
當輸入的n的值為32時,
i=1,第1次循環(huán),n=32,n為偶數(shù),n=16
i=2,第2次循環(huán),n為偶數(shù),n=8
i=3,第3次循環(huán),n為偶數(shù),n=4
i=4,第4次循環(huán),n為偶數(shù),n=2
i=5,第5次循環(huán),n為偶數(shù),n=1
i=6,滿足條件n=1,退出循環(huán),輸出i的值為6.符合題意.
當輸入的n的值為4時,
i=1,第1次循環(huán),n=4,n為偶數(shù),n=2
i=2,第2次循環(huán),n為偶數(shù),n=1
i=3,滿足條件n=1,退出循環(huán),輸出i的值為3.不符合題意.
故選:C.

點評 本題考查了程序框圖的應用問題,解題時應模擬程序框圖的運行過程,以便得出正確的結論,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=|2x-3|-|x+1|.
(1)若不等式f(x)≤a的解集是空集,求實數(shù)a的取值范圍;
(2)若存在x0∈R,使得2f(x0)≤-t2+4|t|成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的側面積等于(  )
A.12πcm2B.15πcm2C.24πcm2D.30πcm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知圓C經過(2,4)、(1,3),圓心C在直線x-y+1=0上,過點A(0,1),且斜率為k的直線l交圓相交于M、N兩點.
(Ⅰ)求圓C的方程;
(Ⅱ)(i)請問$\overrightarrow{AM}•\overrightarrow{AN}$是否為定值.若是,請求出該定值,若不是,請說明理由;
(ii)若O為坐標原點,且$\overrightarrow{OM}•\overrightarrow{ON}=12$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在△ABC中,角A,B,C的對邊分別為a,b,c,已知△ABC的外接圓半徑R=$\sqrt{2}$,且tanB+tanC=$\frac{\sqrt{2}sinA}{cosC}$
(1)求B和b的值;
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左,右焦點分別是F1,F(xiàn)2,點P在雙曲線上,且滿足∠PF2F1=2∠PF1F2=60°,則此雙曲線的離心率等于(  )
A.2$\sqrt{3}$-2B.$\frac{\sqrt{3}+1}{2}$C.$\sqrt{3}$+1D.2$\sqrt{3}$+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.把正整數(shù)按一定的規(guī)律排成如圖所示的三角形數(shù)陣.設aij(i,j∈N*)是位于數(shù)陣中從上向下數(shù)第i行,從左向右數(shù)第j列的數(shù),例如:a43=10,若aij=173,則i+j=11.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓C的中心在坐標原點,焦點在x軸上,離心率為$\frac{\sqrt{3}}{2}$,過焦點垂直于x軸的直線與橢圓相交的弦長為1.
(1)求橢圓C的標準方程;
(2)若橢圓C長軸的左右端點分別為A1,A2,設直線x=-4與x軸交于點D,動點M是直線x=-4上異于點D的任意一點,直線A1M,A2M與橢圓C分別交于P,Q兩點,問直線PQ是否恒過定點?若是,求出定點坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖所示,若a=-4,則輸出結果是( 。
A.是正數(shù)B.是負數(shù)C.-4D.16

查看答案和解析>>

同步練習冊答案