11.一束光線從點M(4,5)射出,到點N(2,0)后被x軸反射,求該光線及反射光線所在的直線方程(請用直線的一般方程表示解題結(jié)果)

分析 通過已知條件直接求出入射光線所在的直線方程,利用對稱知識求出反射光線的直線方程即可.

解答 解:一條光線從點M(4,5)射出,經(jīng)過點N(2,0),
則入射光線所在直線方程為:$\frac{5-0}{4-2}$=$\frac{y-0}{x-2}$,
即5x-2y-10=0;,
∵一條光線從點M(4,5)射出,經(jīng)過點N(2,0),又經(jīng)x軸反射,
∴入射光線和反射光線關(guān)于x軸對稱,
∴反射光線所在的直線方程:5x-2y-10=0.

點評 本題考查直線對稱性知識的應用,直線方程的求法,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.在學習數(shù)學的過程中,我們通常運用類比猜想的方法研究問題.
(1)在圓x2+y2=r2(r>0)中,AB為圓的任意一條直徑,C為圓上異于A、B的任意一點,當直線AC與BC的斜率kAC、kBC存在時,求kAC•kBC的值;
(2)在橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$中,AB為過橢圓中心的任意一條弦,C為橢圓上異于A、B的任意一點,當直線AC與BC的斜率kAC、kBC存在時,求kAC•kBC的值;
(3)直接寫出橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$中類似的結(jié)論(不用證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列各式比較大小正確的是( 。
A.1.72.5>1.73B.0.6-1>0.62C.0.8-0.1>1.250.2D.1.70.3<0.93.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知a∈R,函數(shù)f(x)=${log_2}(\frac{1}{x}+a)$.
(1)若f(2)=-3,求實數(shù)a的值;
(2)若關(guān)于x的方程f(x)-log2[(a-4)x+2a-5]=0的解集中恰好有一個元素,求a的取值范圍.
(3)設a>0,若對任意t∈[$\frac{1}{2}$,1],函數(shù)f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)f(x)=$\left\{\begin{array}{l}|{lo{g}_{5}(1-x)|,(x<1)}\\{-(x-2)^{2}+2,(x>1,x≠2)}\end{array}\right.$ 且對于方程f(x)2-af(x)+a2-3=0有7個實數(shù)根,則實數(shù)a的取值范圍是$\sqrt{3}<a<2$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.同時滿足兩個條件:(1)定義域內(nèi)是減函數(shù);(2)定義域內(nèi)是奇函數(shù)的函數(shù)是( 。
A.f(x)=-x|x|B.$f(x)=x+\frac{1}{x}$C.f(x)=tanxD.$f(x)=\frac{lnx}{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知$\overrightarrow{a}$=(x,1),$\overrightarrow$=(4,-2).
(Ⅰ)當$\overrightarrow{a}$∥$\overrightarrow$時,求|$\overrightarrow{a}$+$\overrightarrow$|;
(Ⅱ)若$\overrightarrow{a}$與$\overrightarrow$所成角為鈍角,求x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列{an}是首項為1的單調(diào)遞增的等比數(shù)列,且滿足a3,$\frac{5}{3}{a_4},{a_5}$成等差數(shù)列.
(1)求{an}的通項公式;
(2)若bn=log3(an•an+1)(n∈N*),求數(shù)列{an•bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{x}{e^x}$-axlnx(a∈R)在x=1處的切線的斜率k=-1.
(1)求a的值;
(2)證明:f(x)<$\frac{2}{e}$.
(3)若正實數(shù)m,n滿足mn=1,證明:$\frac{1}{e^m}+\frac{1}{e^n}$<2(m+n).

查看答案和解析>>

同步練習冊答案