分析 (1)求出F(x)的導數,由導數大于0,可得增區(qū)間;導數小于0,可得減區(qū)間,注意定義域(0,+∞);
(2)求出導數,由導數的幾何意義可得$\frac{{x}_{0}-a}{{{x}_{0}}^{2}}$≤$\frac{1}{2}$(0<x0≤3)恒成立?a≥(-$\frac{1}{2}$x02+x0)max,運用二次函數的最值求法,即可得到最大值,進而得到a的最小值.
解答 解:(1)F(x)=lnx+$\frac{a}{x}$(x>0),F′(x)=$\frac{1}{x}$-$\frac{a}{{x}^{2}}$=$\frac{x-a}{{x}^{2}}$,a>0,
當x>a,F′(x)>0,f(x)在(a,+∞)單調遞增,
當0<x<a,F′(x)<0,F(x)在(0,a)單調遞減,
則F(x)的增區(qū)間為(a,+∞),減區(qū)間為(0,a);
(2)由y′=$\frac{x-a}{{x}^{2}}$,a>0(0<x≤3),
k=y′|${\;}_{x={x}_{0}}^{\;}$=$\frac{{x}_{0}-a}{{{x}_{0}}^{2}}$≤$\frac{1}{2}$(0<x0≤3)恒成立?a≥(-$\frac{1}{2}$x02+x0)max,
當x0=1時,-$\frac{1}{2}$x02+x0 取得最大值$\frac{1}{2}$,
∴a≥$\frac{1}{2}$,
∴amin=$\frac{1}{2}$.
點評 本題考查利用導數研究函數的單調性,考查函數恒成立問題,考查化歸思想的綜合運用,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\overrightarrow{a}$•|$\overrightarrow{a}$|=$\overrightarrow{a}$2 | B. | ($\overrightarrow{a}$•$\overrightarrow$)2=$\overrightarrow{a}$2•$\overrightarrow$2 | C. | ($\overrightarrow{a}$•$\overrightarrow$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$•$\overrightarrow{c}$) | D. | |$\overrightarrow{a}$•$\overrightarrow$|≤|$\overrightarrow{a}$||$\overrightarrow$| |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 150° | D. | 120° |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 7 | B. | 9 | C. | 20 | D. | 22 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1組 | B. | 2組 | C. | 3組 | D. | 4組 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com