10.下列共有四個(gè)命題:
(1)命題“$?{x_0}∈R,x_0^2+1>3{x_0}$”的否定是“?x∈R,x2+1<3x”;
(2)在回歸分析中,相關(guān)指數(shù)R2為0.96的模型比R2為0.84的模型擬合效果好;
(3)a,b∈R,$p:a<b,q:\frac{1}<\frac{1}{a}<0$,則p是q的充分不必要條件;
(4)已知冪函數(shù)f(x)=(m2-3m+3)xm為偶函數(shù),則f(-2)=4.
其中正確的序號(hào)為(2)(4).(寫(xiě)出所有正確命題的序號(hào))

分析 (1),(2)根據(jù)定義判斷即可;
(3)a,b∈R,p:a<b,q:1b<1a<0,q能推出p,反之不行,則p是q的必要不充分條件;
(4)根據(jù)冪函數(shù)的定義求出m值即可.

解答 解:(1)命題“$?{x_0}∈R,x_0^2+1>3{x_0}$”的否定是“?x∈R,x2+1≤3x”,故錯(cuò)誤;
(2)在回歸分析中,由定義可知,相關(guān)指數(shù)絕對(duì)值越接近1,相關(guān)性越強(qiáng),相關(guān)指數(shù)R2為0.96的模型比R2為0.84的模型擬合效果好,故正確;
(3)a,b∈R,$p:a<b,q:\frac{1}<\frac{1}{a}<0$,則p是q的必要不充分條件,故錯(cuò)誤;
(4)已知冪函數(shù)f(x)=(m2-3m+3)xm為偶函數(shù),
∴m2-3m+3=1,
∴m=2,或m=1(舍去)
則f(-2)=4.故正確.
故答案為(2),(4).

點(diǎn)評(píng) 本題考查了存在命題,相關(guān)指數(shù),冪函數(shù),四種命題的定義,屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=x3+ax2-9x-1(a<0),若曲線y=f(x)在各點(diǎn)處的切線斜率的最小值是-12,求:
(1)a的值;
(2)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=x2+ax+b.
(Ⅰ)若函數(shù)f(x)的圖象過(guò)點(diǎn)(1,4)和(2,5),求f(x)的解析式;
(Ⅱ)若函數(shù)f(x)的區(qū)間[1,2]不單調(diào),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=lnx,g(x)=$\frac{a}{x}$(a>0),設(shè)F(x)=f(x)+g(x).
(1)求函數(shù)F(x)的單調(diào)區(qū)間;
(2)若以函數(shù)y=F(x)(x∈(0,3])圖象上任意一點(diǎn)P(x0,y0)為切點(diǎn)的切線的斜率k≤$\frac{1}{2}$恒成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖,陰影部分的面積為( 。
A.2$\sqrt{3}$B.2-$\sqrt{3}$C.$\frac{32}{3}$D.$\frac{35}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=x2+mx+$\frac{mx+1}{{x}^{2}}$+n(m,n∈R)有零點(diǎn),則m2+n2的取值范圍是[$\frac{4}{5}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知復(fù)數(shù)z=x+(x-a)i,若對(duì)任意實(shí)數(shù)x∈(1,2),恒有|z|>|z+i|,則實(shí)數(shù)a的取值范圍為(  )
A.$({-∞,\frac{1}{2}}]$B.$({-∞,\frac{1}{2}})$C.$[\frac{5}{2},+∞)$D.$({\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.不等式x2+3x-4<0的解集是(-4,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.甲、乙、丙三人獨(dú)立解決同一道數(shù)學(xué)題,如果三人分別完成的概率依次是p1、p2、p3,那么至少有一人解決這道題的概率是( 。
A.p1+p2+p3B.1-(1-p1)(1-p2)(1-p3C.1-p1p2p3D.p1p2p3

查看答案和解析>>

同步練習(xí)冊(cè)答案