分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,確定z取最大值點的最優(yōu)解,利用基本不等式的性質(zhì),利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=2ax+by(a>0,b>0)得y=-$\frac{2a}$x+$\frac{k}$,
則直線的斜率k=-$\frac{2a}$<0,截距最大時,z也最大.
平移直y=-$\frac{2a}$+$\frac{k}$,由圖象可知當(dāng)直線y=-$\frac{2a}$+$\frac{k}$經(jīng)過點A時,
直線y=-$\frac{2a}$+$\frac{k}$截距最大,此時z最大,
由$\left\{\begin{array}{l}{2x-y-6=0}\\{x-y+3=0}\end{array}\right.$,解得x=9,y=12
即A(9,12),
此時z=18a+12b=6,
即3a+2b=1,
∴$\frac{1}{a}+\frac{2}$=($\frac{1}{a}+\frac{2}$)(3a+2b)=3+4+$\frac{2b}{a}$+$\frac{6a}$
≥7+2$\sqrt{\frac{2b}{a}•\frac{6a}}$=7+4$\sqrt{3}$,當(dāng)且僅當(dāng)b=$\sqrt{3}$a時,取等號,
故$\frac{1}{a}+\frac{2}$的最小值為7+4$\sqrt{3}$,
故答案為:7+4$\sqrt{3}$.
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義先求出最優(yōu)解是解決本題的關(guān)鍵,利用基本不等式的解法和結(jié)合數(shù)形結(jié)合是解決本題的突破點.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 96 | B. | 114 | C. | 168 | D. | 240 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
價格x(百元) | 4 | 5 | 6 | 7 | 8 | 9 |
銷量y(件/天) | 90 | 84 | 83 | 80 | 75 | 68 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com