17.在等差數(shù)列{an}中,an>0,且a1+a2+…+a10=30,則a5+a6的值( 。
A.3B.6C.9D.12

分析 由已知結(jié)合等差數(shù)列的性質(zhì)可得5(a5+a6)=30,則答案可求.

解答 解:在等差數(shù)列{an}中,由an>0,且a1+a2+…+a10=30,
得(a1+a10)+(a2+a9)+(a3+a8)+(a4+a7)+(a5+a6)=30,
即5(a5+a6)=30,∴a5+a6=6.
故選:B.

點(diǎn)評 本題考查等差數(shù)列的性質(zhì),是基礎(chǔ)的計(jì)算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ex-kx+k(k∈R).
(1)試討論函數(shù)y=f(x)的單調(diào)性;
(2)若該函數(shù)有兩個不同的零點(diǎn)x1,x2試求實(shí)數(shù)k取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.圓x2+(y+1)2=3繞直線kx-y-1=0旋轉(zhuǎn)一周所得的幾何體的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.給出下列四個命題:
①兩個向量相等,則它們的起點(diǎn)相同,終點(diǎn)相同;
②若$\overrightarrow{a}$=$\overrightarrow$,$\overrightarrow$=$\overrightarrow{c}$,則$\overrightarrow{a}$=$\overrightarrow{c}$;
③設(shè)$\overrightarrow{{a}_{0}}$是單位向量,若$\overrightarrow4s4wiyk$∥$\overrightarrow{{a}_{0}}$,且|$\overrightarrow4ieoco4$|=1,則$\overrightarrowioam00w$=$\overrightarrow{{a}_{0}}$;
④$\overrightarrowgmykuky$=$\overrightarrow$的充要條件是|$\overrightarrowc4i44kw$=|$\overrightarrow$|且$\overrightarrowugqc8mu$∥$\overrightarrow$.
其中假命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)的定義域?yàn)镽+,且對于任何正實(shí)數(shù)x、y都有f(xy)=f(x)+f(y),若f(8)=6,則f($\sqrt{2}$)=(  )
A.1B.2C.-1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知正三棱錐P-ABC,點(diǎn)P,A,B,C都在半徑為$\sqrt{2}$的球面上,若PA,PB,PC兩兩相互垂直,則球心到截面ABC的距離為$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知曲線 f(x)=ax2-2在橫坐標(biāo)為1的點(diǎn) p處切線的傾斜角為$\frac{π}{4}$,則a=( 。
A.$\frac{1}{2}$B.1C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,在三棱錐A-BCD中,AB⊥AD,AC⊥AD,∠BAC=60°,AB=AC=AD=4,點(diǎn)P,Q分別在側(cè)面ABC棱AD上運(yùn)動,PQ=2,M為線段PQ中點(diǎn),當(dāng)P,Q運(yùn)動時,點(diǎn)M的軌跡把三棱錐A-BCD分成上、下兩部分的體積之比等于$\frac{π}{{48\sqrt{3}-π}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知橢圓C:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{9}$=1,若P(x,y)是橢圓C上一動點(diǎn),則x2+y2-2x的取值范圍是( 。
A.[6-2$\sqrt{6}$,9]B.[6-2$\sqrt{6}$,11]C.[6+2$\sqrt{6}$,9]D.[6+2$\sqrt{6}$,11]

查看答案和解析>>

同步練習(xí)冊答案