【題目】已知函數(shù)f(x)=-2+lnx.
(Ⅰ)若a=1,求函數(shù)f(x)的極值;
(Ⅱ)若函數(shù)f(x)在區(qū)間[1,2]上為單調遞增函數(shù),求實數(shù)a的取值范圍.
【答案】(Ⅰ)見解析 (Ⅱ)的取值范圍是.
【解析】
試題分析:(1)利用導數(shù)求單調性的步驟進行即可;(2)函數(shù)f(x)在區(qū)間[1,2]上為單調函數(shù),等價于在區(qū)間[1,2]上,f′(x)≥0或f′(x)≤0恒成立,然后轉化為最值問題來處理.
試題解析:(1)當a=1時,f(x)=3x-2x2+ln x,其定義域為(0,+∞),
則f′(x)=-4x+3==(x>0),
當x∈(0,1)時,f′(x)>0,故函數(shù)f(x)在區(qū)間(0,1)上單調遞增;
當x∈(1,+∞)時,f′(x)<0,故函數(shù)f(x)在區(qū)間(1,+∞)上單調遞減.
所以f(x)的單調遞增區(qū)間為(0,1),單調遞減區(qū)間為(1,+∞).
(2)由題易得f′(x)=-4x+(x>0),
因為函數(shù)f(x)在區(qū)間[1,2]上為單調函數(shù),所以在區(qū)間[1,2]上,f′(x)≥0或f′(x)≤0恒成立,
即-4x+≥0或-4x+≤0在x∈[1,2]時恒成立,即≥4x-或≤4x-(1≤x≤2),即≥max或≤min,其中1≤x≤2.
令h(x)=4x-(1≤x≤2),易知函數(shù)h(x)在[1,2]上單調遞增,故h(1)≤h(x)≤h(2).
所以≥h(2)或≤h(1),即≥4×2-=,≤4×1-1=3,
解得a<0或0<a≤或a≥1. 故a的取值范圍為(-∞,0)∪(0,]∪[1,+∞).
科目:高中數(shù)學 來源: 題型:
【題目】第31屆夏季奧林匹克運動會于2016年8月5日至8月21日在巴西里約熱內盧舉行.如表是近五屆奧運會中國代表團和俄羅斯代表團獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù)(單位:枚).
第30屆倫敦 | 第29屆北京 | 第28屆雅典 | 第27屆悉尼 | 第26屆亞特蘭大 | |
中國 | 38 | 51 | 32 | 28 | 16 |
俄羅斯 | 24 | 23 | 27 | 32 | 26 |
(1)根據(jù)表格中兩組數(shù)據(jù)在答題卡上完成近五屆奧運會兩國代表團獲得的金牌數(shù)的莖葉圖,并通過莖葉圖比較兩國代表團獲得的金牌數(shù)的平均值及分散程度(不要求計算出具體數(shù)值,給出結論即可);
(2)如表是近五屆奧運會中國代表團獲得的金牌數(shù)之和(從第26屆算起,不包括之前已獲得的金牌數(shù))隨時間變化的數(shù)據(jù):
時間(屆) | 26 | 27 | 28 | 29 | 30 |
金牌數(shù)之和(枚) | 16 | 44 | 76 | 127 | 165 |
作出散點圖如圖:
由圖可以看出,金牌數(shù)之和與時間之間存在線性相關關系,請求出關于的線性回歸方程,并預測到第32屆奧運會時中國代表團獲得的金牌數(shù)之和為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= .
(Ⅰ)若a=﹣1,證明:函數(shù)f(x)是(0,+∞)上的減函數(shù);
(Ⅱ)若曲線y=f(x)在點(1,f(1))處的切線與直線x﹣y=0平行,求a的值;
(Ⅲ)若x>0,證明: (其中e=2.71828…是自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,,其中是不等于零的常數(shù)。
(1)寫出的定義域;
(2)求的單調遞增區(qū)間;
(3)已知函數(shù),定義:,.其中,表示函數(shù)在上的最小值,表示函數(shù)在上的最大值.例如:,,則,,,,當時,設,不等式恒成立,求,的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設0<a<1,已知函數(shù)f(x)= ,若對任意b∈(0, ),函數(shù)g(x)=f(x)﹣b至少有兩個零點,則a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com