【題目】如圖,建立平面直角坐標系,軸在地平面上,軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程表示的曲線上,其中與發(fā)射方向有關.炮的射程是指炮彈落地點的橫坐標.

1)求炮的最大射程;

2)設在第一象限有一飛行物(忽略其大。,其飛行高度為3.2千米,試問它的橫坐標不超過多少時,炮彈可以擊中它?請說明理由.

【答案】1)炮的最大射程是10千米.

2)當不超過6千米時,炮彈可以擊中目標.

【解析】

試題(1)求炮的最大射程即求k0)與x軸的橫坐標,求出后應用基本不等式求解.(2)求炮彈擊中目標時的橫坐標的最大值,由一元二次方程根的判別式求解

試題解析:(1)令y0,得kx1k2x20

由實際意義和題設條件知x0,k0,

x10,當且僅當k1時取等號.所以炮的最大射程為10千米.

2)因為a0,所以炮彈可擊中目標

存在k0,使3.2ka1k2a2成立

關于k的方程a2k220aka2640有正根

判別式Δ=(-20a24a2a264≥0

a≤6.

所以當a不超過6(千米)時,可擊中目標.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù),

(Ⅰ)若求不等式的解集

(Ⅱ)若不等式的解集非空,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代著名的數(shù)學家劉徽著有《海島算經(jīng)》.內(nèi)有一篇:“今有望海島,立兩表齊、高三丈,前后相去千步,今后表與前表相直,從前表卻行百二十三步,人目著地望島峰,與表末參合.從后表卻行百二十七步,人目著地取望島峰,亦與表末參合.問島高及去表各幾何?”(參考譯文:假設測量海島,立兩根標桿,高均為5步,前后相距1000步,令前后兩根標桿的底部和島的底部在同一水平直線上,從前標桿退行123步,人的視線從地面(人的高度忽略不計)過標桿頂恰好觀測到島峰,從后標桿退行127步,人的視線從地面過標桿頂恰好觀測到島峰,問島高多少?島與前標桿相距多遠?)(丈、步為古時計量單位,三丈=5步).則海島高度為

A. 1055步 B. 1255步 C. 1550步 D. 2255步

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市工業(yè)部門計劃對所轄中小型企業(yè)推行節(jié)能降耗技術改造,下面是對所轄企業(yè)是否支持技術改造進行的問卷調(diào)查的結果:

支持

不支持

合計

中型企業(yè)

40

小型企業(yè)

240

合計

560

已知從這560家企業(yè)中隨機抽取1家,抽到支持技術改造的企業(yè)的概率為.

(1)能否在犯錯誤的概率不超過0.025的前提下認為“是否支持節(jié)能降耗技術改造”與“企業(yè)規(guī)!庇嘘P?

(2)從上述支持節(jié)能降耗的中小企業(yè)中按分層抽樣的方法抽出12家企業(yè),然后從這12家企業(yè)選出9家進行獎勵,分別獎勵中型企業(yè)50萬元,小型企業(yè)10萬元.設為所發(fā)獎勵的金額.

的分布列和期望.

附:

0.05

0.025

0.01

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)),其中.

1)在區(qū)間上,是否存在最小值?若存在,求出最小值;若不存在,請說明理由.

2)若函數(shù)的兩個極值點為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設關于某種設備的使用年限(年)與所支出的維修費用 (萬元)有如下統(tǒng)計:

2

3

4

5

6

2.2

3.8

5.5

6.5

7.0

已知, .

(1)求,

(2)具有線性相關關系,求出線性回歸方程;

(3)估計使用年限為10年時,維修費用約是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線的焦點為F,已知直線與拋物線C交于A,B兩點(A,B兩點分別在軸的上、下方).

(1)求證:;

(2)已知弦長,試求:過A,B兩點,且與直線相切的圓D的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中,錯誤的是( )

A.將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,方差不變

B.對于回歸方程,變量每增加一個單位,平均增加5個單位

C.線性回歸方程所對應的直線必過點

D.在一個列聯(lián)表中,由計算得,則有的把握說兩個變量有關

本題可以參考獨立性檢驗臨界值表

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線的焦點為,已知點為拋物線上的兩個動點,且滿足.過弦的中點作拋物線準線的垂線,垂足為,則的最大值為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案