8.若f(x2+1)=2x2+1,則f(x)=2x-1.

分析 換元法:令x2+1=t,則x2=t-1,代入可得f(t)的解析式,進(jìn)而可得f(x)的解析式.

解答 解:令x2+1=t,則x2=t-1,代入可得f(t)=2t-1
∴f(x)=2x-1
故答案為:2x-1

點(diǎn)評(píng) 本題考查函數(shù)解析式的求法,換元是本題的關(guān)鍵,屬基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.三個(gè)數(shù)70.3,0.37,㏑0.3,的大小順序是(  )
A.70.3,0.37,㏑0.3B.70.3,㏑0.3,0.37C.0.37,70.3,㏑0.3D.㏑0.3,70.3,0.37

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)是定義在(0,+∞)上的函數(shù),且對(duì)任意的正實(shí)數(shù)x1,x2均有:(x1-x2)[f(x1)-f(x2)]>0,則不等式f(x)-f(8x-16)>0的解集是( 。
A.(0,+∞)B.(0,2)C.(2,+∞)D.(2,$\frac{16}{7}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.根據(jù)下列算法語(yǔ)句,將輸出的A值依次記為a1,a2,…,an,…,a2015;已知函數(shù)f(x)=a2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期是a1,且函數(shù)y=f(x)的圖象關(guān)于直線x=$\frac{1}{6}$對(duì)稱.
(Ⅰ)求函數(shù)y=f(x)表達(dá)式;
(Ⅱ)已知△ABC中三邊a,b,c對(duì)應(yīng)角A,B,C,a=4,b=4$\sqrt{3}$,∠A=30°,求f(B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若異面直線a、b所成的角為60°,則過(guò)空間一點(diǎn)P且與a、b所成的角都為60°的直線有3條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某房產(chǎn)開(kāi)發(fā)商投資81萬(wàn)元建一座寫字樓,第一年裝修費(fèi)為1萬(wàn)元,以后每年增加裝修費(fèi)2萬(wàn)元,現(xiàn)把寫字樓出租,每年收入租金30萬(wàn)元.
(1)若扣除投資和各種裝修費(fèi),則從第幾年開(kāi)始獲取純利潤(rùn)?
(2)若干年后開(kāi)發(fā)商為了投資其他項(xiàng)目,有兩種處理方案:
①年平均利潤(rùn)最大時(shí),以50萬(wàn)元出售該樓;
②純利潤(rùn)總和最大時(shí),以10萬(wàn)元出售該樓;
問(wèn)選擇哪種方案盈利更多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知數(shù)列{an}滿足a8=2,an+1=$\frac{1}{1-{a}_{n}}$,則a1=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.要設(shè)計(jì)兩個(gè)矩形框架,甲矩形的面積是1m2,長(zhǎng)為xm,乙矩形的面積為9m2,長(zhǎng)為ym,若甲矩形的一條寬與乙矩形一條寬之和為1m,則x+y的最小值為16m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知命題p:函數(shù)$f(x)=\frac{1}{2}{x^2}-9lnx$在區(qū)間(m,m+1)上單調(diào)遞減,命題q:實(shí)數(shù)m滿足方程$\frac{x^2}{m-1}+\frac{y^2}{5-m}=1$表示的焦點(diǎn)在y軸上的橢圓.
(1)當(dāng)p為真命題時(shí),求m的取值范圍;
(2)若命題“p且q”為假命題,“p或q”為真命題,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案