16.設(shè)數(shù)列{an}是等比數(shù)列,且an>0,Sn為其前n項(xiàng)和.已知a2a4=16,$\frac{{{a_4}+{a_5}+{a_8}}}{{{a_1}+{a_2}+{a_5}}}=8$,則S5等于( 。
A.40B.20C.31D.43

分析 由$\frac{{{a_4}+{a_5}+{a_8}}}{{{a_1}+{a_2}+{a_5}}}=8$求出q=2,由a2a4=16,求出a1,再利用求和公式計(jì)算即可

解答 解:∵$\frac{{{a_4}+{a_5}+{a_8}}}{{{a_1}+{a_2}+{a_5}}}=8$=q3,
∴q=2,
∵a2a4=16=a32,
∴a3=4,
∴a1=1,
∴S5=$\frac{1-{2}^{5}}{1-2}$=31,
故選:C

點(diǎn)評(píng) 本題考查了等比數(shù)列的性質(zhì)和前n項(xiàng)和公式,屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.“石頭、剪刀、布”,又稱“猜丁殼”,是一種流傳多年的猜拳游戲,起源于中國(guó),然后傳到日本、朝鮮等地,隨著亞歐貿(mào)易的不斷發(fā)展,它傳到了歐洲,到了近代逐漸風(fēng)靡世界.其游戲規(guī)則是:出拳之前雙方齊喊口令,然后在話音剛落時(shí)同時(shí)出拳,握緊的拳頭代表“石頭”,食指和中指伸出代表“剪刀”,五指伸開(kāi)代表“布”.“石頭”勝“剪刀”、“剪刀”勝“布”、而“布”又勝過(guò)“石頭”.若所出的拳相同,則為和局.小千和大年兩位同學(xué)進(jìn)行“五局三勝制”的“石頭、剪刀、布”游戲比賽,則小千和大年比賽至第四局小千勝出的概率是(  )
A.$\frac{1}{27}$B.$\frac{2}{27}$C.$\frac{2}{81}$D.$\frac{8}{81}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知數(shù)列$\sqrt{3},3,\sqrt{15}$,…,$\sqrt{3(2n-1)}$,那么9是數(shù)列的第14項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)的圖象如圖所示,f′(x)是f(x)的導(dǎo)函數(shù),則下列數(shù)值排序正確的是( 。
A.0<f′(2)<f′(3)<f(3)-f(2)B.0<f′(3)<f(3)-f(2)<f′(2)C.0<f′(3)<f′(2)<f(3)-f(2)D.0<f(3)-f(2)<f′(2)<f′(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知平面向量$\overrightarrow a=({x,1}),\overrightarrow b=({2,-3})$,若$\overrightarrow a∥\overrightarrow b$,則x=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.復(fù)數(shù)z在眏射f下的象為(2+i)z,則1-2i的原象為(  )
A.-iB.iC.4-3iD.4+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.下表數(shù)據(jù)為某地區(qū)某基地某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:噸)及對(duì)應(yīng)銷售價(jià)格y(單位:萬(wàn)元/噸).
x123
y543
(1)若y與x有較強(qiáng)的線性相關(guān)關(guān)系,請(qǐng)用最小二乘法求出y關(guān)與x的線性回歸方程$\widehaty=\widehatbx+\widehata$;
(2)若每噸該農(nóng)產(chǎn)品的成本為1萬(wàn)元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測(cè)當(dāng)年產(chǎn)量為多少噸時(shí),年利潤(rùn)z最大?最大利潤(rùn)是多少?
參考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{({{x_i}{y_i}})}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)正實(shí)數(shù)x,y滿足x+2y=xy,若m2+2m<x+2y恒成立,則實(shí)數(shù)m的取值范圍是(-4,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.將正整數(shù)排成下表:

則在表中數(shù)字2015出現(xiàn)在(  )
A.第44行第78列B.第45行第79列C.第44行第77列D.第45行第77列

查看答案和解析>>

同步練習(xí)冊(cè)答案