3.在數(shù)列{an}中,若存在非零整數(shù)T,使得an+T=am對(duì)于任意的正整數(shù)m均成立,那么稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期,若數(shù)列xn滿足xn+1=|x${\;}_{{n}_{\;}}$-xn-1|(n≥2,n∈N),如x1=1,λ2=a(a∈R,a≠0),當(dāng)數(shù)列xn的周期最小時(shí),該數(shù)列的前2015項(xiàng)的和是1343a+1(a≥1).

分析 ①若其最小周期為1,則該數(shù)列是常數(shù)列,即每一項(xiàng)都等于1,此時(shí)a=1,而該數(shù)列的項(xiàng)分別為1,1,0,1,1,0,1,1,0,…,即此時(shí)該數(shù)列是以3為周期的數(shù)列,矛盾,舍去.②若其最小周期為2,同理得出矛盾,舍去.綜上所述,當(dāng)數(shù)列{xn}的周期最小時(shí),其最小周期是3,即可得出.

解答 解:①若其最小周期為1,則該數(shù)列是常數(shù)列,即每一項(xiàng)都等于1,此時(shí)a=1,
而該數(shù)列的項(xiàng)分別為1,1,0,1,1,0,1,1,0,…,即此時(shí)該數(shù)列是以3為周期的數(shù)列,矛盾,舍去.
②若其最小周期為2,則有a3=a1,即|a-1|=1,a-1=1或-1,a=2或a=0,又a≠0,故a=2,
此時(shí)該數(shù)列的項(xiàng)依次為1,2,1,1,0,…,由此可見,此時(shí)它并不是以2為周期的數(shù)列,舍去.
綜上所述,當(dāng)數(shù)列{xn}的周期最小時(shí),其最小周期是3.
(i)a≥1時(shí),a1=1,a2=a,a3=|a-1|=a-1,a4=|a-1-a|=1,a5=a,…,此時(shí)該數(shù)列的前2 015項(xiàng)和是671×(1+a+a-1)+(1+a)=1343a+1.
(ii)a<1,a≠0時(shí),a1=1,a2=a,a3=|a-1|=1-a,a4=|1-a-a|=1,解得a=0或1,舍去.
故答案為:1343a+1(a≥1).

點(diǎn)評(píng) 本題考查了數(shù)列的周期性、分類討論方法,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的側(cè)面PAB的面積是( 。
A.$\sqrt{7}$B.2C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)中,既是奇函數(shù),又在定義域上是增函數(shù)的是( 。
A.y=x2B.y=x|x|C.y=x+$\frac{2}{x}$D.y=x-$\frac{4}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=lnx+$\frac{m}{x}$,m∈R
(1)當(dāng)m=e(e為自然對(duì)數(shù)的底數(shù))時(shí),f(x)的極小值;
(2)若函數(shù)g(x)=f′(x)-$\frac{x}{3}$存在唯一零點(diǎn),求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,在△ABC中,I為△ABC的內(nèi)心,AI交BC于D,交△ABC外接圓于E
求證:
(1)IE=EC
(2)IE2=ED•EA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知定義在R上的函數(shù)f(x)滿足f(x)=-f(x+$\frac{3}{2}$),且f(-2)=f(-1)=-1,f(0)=2,則f(1)+f(2)+f(3)+…+f(2015)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線的中心在原點(diǎn),兩個(gè)焦點(diǎn)F1,F(xiàn)2分別為$(-\sqrt{5},0)和(\sqrt{5},0)$,點(diǎn)P在雙曲線上,PF1⊥PF2,且△PF1F2的面積為1,則雙曲線的方程為( 。
A.$\frac{x^2}{2}-\frac{y^2}{3}=1$B.$\frac{x^2}{3}-\frac{y^2}{2}=1$C.$\frac{x^2}{4}-{y^2}=1$D.${x^2}-\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知正實(shí)數(shù)a,b滿足a+b=3,則$\frac{1}{a}+\frac{4}{5+b}$的最小值為(  )
A.1B.$\frac{7}{8}$C.$\frac{9}{8}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)x,y∈N*,x+y=10,xy>20的概率是( 。
A.$\frac{1}{3}$B.$\frac{5}{9}$C.$\frac{2}{3}$D.$\frac{7}{9}$

查看答案和解析>>

同步練習(xí)冊(cè)答案