15.由直線y=kx(k>0)與直線y=0,x=1所圍成的圖形的面積為S1,有曲線y=3-3x2與直線x=0,x=1,y=0所圍成的圖形的面積為S2,當(dāng)S1=S2時(shí),求k的值及直線方程.

分析 分別根據(jù)定積分的計(jì)算法則求出S1,S2,再根據(jù)S1=S2即可求出k的值.

解答 解:由曲線y=3-3x2與直線x=0,x=1,y=0所圍成的圖形的面積為
S2=${∫}_{0}^{1}$(3-3x2)dx=(3x-x3)|${\;}_{0}^{1}$=3-1=2,
則直線y=kx(k>0)與直線y=0,x=1所圍成的圖形的面積為
S1=${∫}_{0}^{1}$kxdx=$\frac{1}{2}$kx2|${\;}_{0}^{1}$=$\frac{1}{2}$k,
由S1=S2時(shí),
∴$\frac{1}{2}$k=2,
∴k=4,
∴y=4x

點(diǎn)評(píng) 本題考查利用定積分求面積,解題的關(guān)鍵是確定被積區(qū)間及被積函數(shù),是一道簡單題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知雙曲線C與x2-2y2=2有公共漸近線,且過點(diǎn)M(2,-2),求C的方程,并寫出其離心率與漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=sinx+$\frac{x^3}{6}$-mx(m≥0).
(1)若f(x)在[0,+∞)上單調(diào)遞增,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)a≥1時(shí),?x∈[0,+∞)不等式sinx-cosx≤eax-2是否恒成立?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.-3290°角是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知圓O:x2+y2=1,一只螞蟻從點(diǎn)$A({\frac{1}{2},-\frac{{\sqrt{3}}}{2}})$出發(fā),沿圓周爬行(逆時(shí)針或順時(shí)針),當(dāng)它爬行到點(diǎn)B(-1,0)時(shí),螞蟻爬行的最短路程為( 。
A.$\frac{2π}{3}$B.$\frac{5π}{6}$C.$\frac{4π}{3}$D.$\frac{7π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R,a≠0),f(-2)=f(0)=0,f(x)的最小值為-1.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)h(x)=log2[n-f(x)],若此函數(shù)在定義域范圍內(nèi)不存在零點(diǎn),求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知數(shù)列{an}滿足:a1=1,a2=2,an=$\frac{{a}_{{\;}_{n-1}}}{{a}_{n-2}}$(n≥3,n∈N*),則a2017等于( 。
A.1B.2C.$\frac{1}{2}$D.22017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),離心率e=$\frac{1}{2}$,橢圓上的點(diǎn)到焦點(diǎn)的最小距離為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在直線l:y=kx+m(k∈R),使其與橢圓C交于A,B兩點(diǎn),且OA⊥OB?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列數(shù)據(jù)中,擬合效果最好的回歸直線方程,其對(duì)應(yīng)的相關(guān)指數(shù)R2為(  )
A.0.27B.0.85C.0.96D.0.5

查看答案和解析>>

同步練習(xí)冊(cè)答案