3.-3290°角是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

分析 把角寫成k×360°+α,0°≤α<360°,k∈z 的形式,根據(jù)α的終邊位置,做出判斷.

解答 解:∵-3290°=-9×360°-50°,故-3290°與-50°終邊相同,故角-3290°在第四象限.
故選:D

點評 本題主要考查終邊相同的角的定義和表示方法,象限角、象限界角的定義,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.復數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},x∈[-1.1]}\\{\frac{1}{x},x∈(1,+∞)}\end{array}\right.$,則$\int_0^2{f(x)}$dx=$\frac{π}{4}$+ln2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設(shè)數(shù)列{an}的前n項和為Sn,若S2=4,an+1=2Sn+1,n∈N*
(1)求數(shù)列{an}的通項公式及Sn;
(2)令bn=log3an+1,Tn=$\frac{1}{_{1}_{3}}$+$\frac{1}{_{2}_{4}}$+$\frac{1}{_{3}_{5}}$+…+$\frac{1}{_{n}_{n+2}}$(n∈N*),求證:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=ex-1+a,函數(shù)g(x)═ax+lnx,α∈R.
(1)求函數(shù)y=g(x)的單調(diào)區(qū)間;
(2)若不等式f(x)≥g(x)+1在[1,+∞)上恒成立,求實數(shù)a的取值范圍;
(3)若x∈(1,+∞),求證:不等式:ex-1-2lnx>-x+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=x2+2x+a.若g(x)=$\frac{1}{{e}^{x}}$,對任意x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f(x1)≤g(x2)成立,則實數(shù)a的取值范圍是( 。
A.(-∞,$\frac{\sqrt{e}}{e}$-8]B.[$\frac{\sqrt{e}}{e}$-8,+∞)C.[$\sqrt{2}$,e)D.(-$\frac{\sqrt{3}}{3}$,$\frac{e}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.原點到直線x+2y-5=0的距離為( 。
A.1B.$\sqrt{5}$C.2D.$\frac{1}{\sqrt{5}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.由直線y=kx(k>0)與直線y=0,x=1所圍成的圖形的面積為S1,有曲線y=3-3x2與直線x=0,x=1,y=0所圍成的圖形的面積為S2,當S1=S2時,求k的值及直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖的三個圖中,上面的是一個長方體截去一個角所得多面體的直觀圖,它的正視圖和側(cè)視圖在下面畫出(單位:cm).

(1)在正視圖下面,按照畫三視圖的要求畫出該多面體的俯視圖;
(2)按照給出的尺寸,求該多面體的體積和表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若角θ滿足條件sinθcosθ<0,且cosθ-sinθ<0,則θ在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習冊答案