分析 (1)由過(guò)點(diǎn)$(2,\sqrt{2})$且離心率為$\frac{{\sqrt{2}}}{2}$的橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,列出方程組,求出a=2$\sqrt{2}$,b=4,由此能求出橢圓C的方程.
(2)設(shè)出直線的方程,將直線的方程與橢圓方程聯(lián)立,利用二次方程的韋達(dá)定理得到弦中點(diǎn)的坐標(biāo),根據(jù)中點(diǎn)在正方形的內(nèi)部,得到中點(diǎn)的坐標(biāo)滿足的不等關(guān)系,求出k的范圍.
解答 解:(1)∵過(guò)點(diǎn)$(2,\sqrt{2})$且離心率為$\frac{{\sqrt{2}}}{2}$的橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上.
∴設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),
則$\left\{\begin{array}{l}{\frac{4}{{a}^{2}}+\frac{2}{^{2}}=1}\\{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}$,解得a=2$\sqrt{2}$,b=4,
∴橢圓C的方程為$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}$=1.
(2)橢圓C的左準(zhǔn)線方程為x=-4,所以點(diǎn)P的坐標(biāo)為(-4,0),
由題意知直線l的斜率存在,所以設(shè)直線l的方程為y=k(x+4)
如圖,設(shè)點(diǎn)M,N的坐標(biāo)分別為(x1,y1),(x2,y2),線段MN的中點(diǎn)為G(x0,y0)
由$\left\{\begin{array}{l}{y=k(x+4)}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}$,得(1+2k2)x2+16k2x+32k2-8=0.①
由△=(16k2)2-4(1+2k2)(32k2-8)>0,解得-$\frac{\sqrt{2}}{2}$<k<$\frac{\sqrt{2}}{2}$.②
因?yàn)閤1,x2是方程①的兩根,
所以x1+x2=-$\frac{16{k}^{2}}{1+2{k}^{2}}$,于是x0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{8{k}^{2}}{1+2{k}^{2}}$,y0=k(x0+4)=$\frac{4k}{1+2{k}^{2}}$.
因?yàn)閤0=-$\frac{8{k}^{2}}{1+2{k}^{2}}$≤0,所以點(diǎn)G不可能在y軸的右邊,
又直線F1B2,F(xiàn)1B1方程分別為y=x+2,y=-x-2
所以點(diǎn)G在正方形Q內(nèi)(包括邊界)的充要條件為$\left\{\begin{array}{l}{{y}_{0}≤{x}_{0}+2}\\{{y}_{0}≥-{x}_{0}-2}\end{array}$,
即$\left\{\begin{array}{l}{\frac{4k}{1+2{k}^{2}}≤-\frac{8{k}^{2}}{1+2{k}^{2}}+2}\\{\frac{4k}{1+2{k}^{2}}≥\frac{8{k}^{2}}{1+2{k}^{2}}-2}\end{array}$,即$\left\{\begin{array}{l}{2{k}^{2}+2k-1≤0}\\{2{k}^{2}-2k-1≤0}\end{array}$,
解得$\frac{-\sqrt{3}-1}{2}$≤k≤$\frac{\sqrt{3}-1}{2}$,
由②得:$\frac{-\sqrt{3}+1}{2}$≤k≤$\frac{\sqrt{3}+1}{2}$.
故直線l斜率的取值范圍是[$\frac{-\sqrt{3}+1}{2}$,$\frac{\sqrt{3}+1}{2}$].
點(diǎn)評(píng) 求圓錐曲線的方程時(shí),一般利用待定系數(shù)法;解決直線與圓錐曲線的位置關(guān)系時(shí),一般采用的方法是將直線方程與圓錐曲線方程聯(lián)立得到關(guān)于某個(gè)未知數(shù)的二次方程,利用韋達(dá)定理來(lái)找突破口.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2-$\frac{{y}^{2}}{9}$=1 | B. | $\frac{{x}^{2}}{9}$-y2=1 | C. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{18}$=1 | D. | $\frac{{x}^{2}}{18}$-$\frac{{y}^{2}}{2}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 1 | C. | -2 | D. | -1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com