考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先將原不等式組化為:
| (x-2)3+2(x-2)+sin(x-2)=-2 | (y-2)3+2(y-2)+sin(y-2)=2 |
| |
,根據(jù)不等式構(gòu)造函數(shù)f(t)=t
3+2t+sint,根據(jù)函數(shù)的奇偶性的定義和導(dǎo)數(shù)符號(hào)判斷出函數(shù)的奇偶性、單調(diào)性,再利用函數(shù)f(t)的奇偶性和單調(diào)性解方程即可.
解答:
解:因?yàn)?span id="a4lofgg" class="MathJye">
| (x-2)3+2x+sin(x-2)=2 | (y-2)3+2y+sin(y-2)=6 |
| |
,所以
| (x-2)3+2(x-2)+sin(x-2)=-2 | (y-2)3+2(y-2)+sin(y-2)=2 |
| |
設(shè)f(x)=x
3+2x+sinx,x∈R,
所以f(-x)=-x
3-2x-sinx=-f(x),則f(x)為奇函數(shù),
又f'(x)=3x
2+2+cosx>0,即函數(shù)f(x)在R上單調(diào)遞增,
由題意可知,f(x-2)=-2,f(y-2)=2,
所以f(x-2)+f(y-2)=2-2=0,
即f(x-2)=-f(y-2)=f(2-y),
因?yàn)楹瘮?shù)f(t)單調(diào)遞增,所以x-2=2-y,
即x+y=4,
古答案為:4.
點(diǎn)評(píng):本題考查函數(shù)奇偶性與單調(diào)性的綜合應(yīng)用,以及導(dǎo)數(shù)與函數(shù)性質(zhì)的關(guān)系,利用條件構(gòu)造函數(shù)f(x)是解決本題的關(guān)鍵,綜合考查了函數(shù)的性質(zhì).