分析 (1)利用三角函數(shù)的誘導(dǎo)公式化簡f(α)即可;
(2)根據(jù)誘導(dǎo)公式,利用同角的三角函數(shù)關(guān)系計(jì)算即可.
解答 解:(1)f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α+π)}{-tan(-α-π)cos(\frac{π}{2}-α)}$
=$\frac{sinαcosα•(-tanα)}{tanα•sinα}$
=-cosα;
(2)α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,
∴sinα=-$\frac{1}{5}$,
∴cosα=-$\sqrt{1{-sin}^{2}α}$=-$\sqrt{1{-(-\frac{1}{5})}^{2}}$=-$\frac{2\sqrt{6}}{5}$,
∴f(α)=-cosα=$\frac{2\sqrt{6}}{5}$.
點(diǎn)評 本題考查了三角函數(shù)的誘導(dǎo)公式與同角三角函數(shù)關(guān)系的應(yīng)用問題,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 回歸直線過樣本點(diǎn)的中心($\overline{x}$,$\overline{y}$) | |
B. | 兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值就越接近于1 | |
C. | 對分類變量X與Y,隨機(jī)變量K2的觀測值越大,則判斷“X與Y有關(guān)系”的把握程度越小 | |
D. | 在回歸直線方程$\stackrel{∧}{y}$=0.2x+0.8中,當(dāng)解釋變量x每增加1個(gè)單位時(shí)預(yù)報(bào)變量$\stackrel{∧}{y}$平均增加0.2個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{\sqrt{2}}{6}$ | D. | $\frac{\sqrt{3}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 4或-4 | C. | -2 | D. | -2或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com