【題目】已知函數(shù)(,e是自然對(duì)數(shù)的底,)
(1)討論的單調(diào)性;
(2)若,是函數(shù)的零點(diǎn),是的導(dǎo)函數(shù),求證:.
【答案】(1)當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時(shí),在單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增; (2)見(jiàn)解析.
【解析】
(1)先求導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),再根據(jù)與大小關(guān)系分類討論函數(shù)單調(diào)性,(2)先研究單調(diào)性,轉(zhuǎn)化所證不等式為,再根據(jù)單調(diào)性,轉(zhuǎn)化證明且.最后利用不等式性質(zhì)進(jìn)行論證.
(1),
設(shè) ,
解法一:由和在上單調(diào)遞增,可知在上單調(diào)遞增,
解法二:由得可知在上單調(diào)遞增,又,
所以當(dāng)時(shí),,當(dāng)時(shí),,
①當(dāng)時(shí),,
當(dāng)時(shí),;當(dāng)時(shí),.
②當(dāng)時(shí),由得或x=1,
當(dāng)時(shí),,,;
當(dāng)時(shí),;當(dāng)時(shí),.
綜上所述:當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;
當(dāng)時(shí),在單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.
(2)解法一(分析法):
當(dāng)時(shí),由(1)知在上的最大值為,
可知,所以在上無(wú)零點(diǎn).
若是函數(shù)的零點(diǎn),則,
∵,
解法一:由和在上單調(diào)遞增,且、,可知在上單調(diào)遞增,
解法二:設(shè),則,
由得,,所以,
可知在上單調(diào)遞增,
要證,只需證,
由(1)知在上單調(diào)遞增,
只需證,又,
只需證且.
,
由,,得,又,所以;
,由得,
綜上所述,得證.
方法二(綜合法):
當(dāng)時(shí),由(1)知在上的最大值為,
可知,所以在上無(wú)零點(diǎn).
若是函數(shù)的零點(diǎn),則,
而 ,
由,,得,又,所以;
,由得,
所以,又,即,
由(1)知在上單調(diào)遞增,所以,
而,
由和在上單調(diào)遞增,且、,
可知在上單調(diào)遞增,
所以,得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)點(diǎn)到直線的距離比它到點(diǎn)的距離大1.
(1)求點(diǎn)的軌跡的方程;
(2)過(guò)定點(diǎn)作直線,與(1)中的軌跡相交于、兩點(diǎn),為點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn),證明:;
(3)在(2)中,是否存在垂直于軸的直線被以為直徑的圓截得的弦長(zhǎng)恒為定值?若存在求出的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】北京地鐵八通線西起四惠站,東至土橋站,全長(zhǎng),共設(shè)13座車站目前八通線執(zhí)行2014年12月28日制訂的計(jì)價(jià)標(biāo)準(zhǔn),各站間計(jì)程票價(jià)單位:元如下:
四惠 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | |
四惠東 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | ||
高碑店 | 3 | span>3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | |||
傳媒大學(xué) | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | ||||
雙橋 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | |||||
管莊 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | ||||||
八里橋 | 3 | 3 | 3 | 3 | 4 | 4 | |||||||
通州北苑 | 3 | 3 | 3 | 3 | 3 | ||||||||
果園 | 3 | 3 | 3 | 3 | |||||||||
九棵樹(shù) | 3 | 3 | 3 | ||||||||||
梨園 | 3 | 3 | |||||||||||
臨河里 | 3 | ||||||||||||
土橋 | |||||||||||||
四惠 | 四惠東 | 高碑店 | 傳媒大學(xué) | 雙橋 | 管莊 | 八里橋 | 通州北苑 | 果園 | 九棵樹(shù) | 梨園 | 臨河里 | 土橋 |
1在13座車站中任選兩個(gè)不同的車站,求兩站間票價(jià)為5元的概率;
2在土橋出站口隨機(jī)調(diào)查了n名下車的乘客,將在八通線各站上車情況統(tǒng)計(jì)如下表:
上車站點(diǎn) | 通州北苑果園九棵樹(shù) 梨園臨河里 | 雙橋管莊八里橋 | 四惠四惠東高碑店 傳媒大學(xué) |
頻率 | a | b | |
人數(shù) | c | 15 | 25 |
求a,b,c,n的值,并計(jì)算這n名乘客乘車平均消費(fèi)金額;
3某人從四惠站上車乘坐八通線到土橋站,中途任選一站出站一次,之后再?gòu)脑撜境塑?/span>若想兩次乘車花費(fèi)總金額最少,可以選擇中途哪站下車?寫(xiě)出一個(gè)即可
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示:在五面體ABCDEF中,四邊形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.
(Ⅰ)求證:平面ABCD⊥平面EDCF;
(Ⅱ)求三棱錐A-BDF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地種植常規(guī)稻A和雜交稻B,常規(guī)稻A的畝產(chǎn)穩(wěn)定為500公斤,統(tǒng)計(jì)近年來(lái)數(shù)據(jù)得到每年常規(guī)稻A的單價(jià)比當(dāng)年雜交稻B的單價(jià)高50%.統(tǒng)計(jì)雜交稻B的畝產(chǎn)數(shù)據(jù),得到畝產(chǎn)的頻率分布直方圖如下;統(tǒng)計(jì)近10年來(lái)雜交稻B的單價(jià)(單位:元/公斤)與種植畝數(shù)(單位:萬(wàn)畝)的關(guān)系,得到的10組數(shù)據(jù)記為,并得到散點(diǎn)圖如下,參考數(shù)據(jù)見(jiàn)下.
(1)求出頻率分布直方圖中m的值,若各組的取值按中間值來(lái)計(jì)算,求雜交稻B的畝產(chǎn)平均值;
(2)判斷雜交稻B的單價(jià)y(單位:元/公斤)與種植畝數(shù)x(單位:萬(wàn)畝)是否線性相關(guān),若相關(guān),試根據(jù)以下統(tǒng)計(jì)的參考數(shù)據(jù)求出y關(guān)于x的線性回歸方程;
(3)調(diào)查得到明年此地雜交稻B的種植畝數(shù)預(yù)計(jì)為2萬(wàn)畝,估計(jì)明年常規(guī)稻A的單價(jià),若在常規(guī)稻A和雜交稻B中選擇,明年種植哪種水稻收入更高?
統(tǒng)計(jì)參考數(shù)據(jù):,,,,
附:線性回歸方程,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠C=,,M,N分別是BC,AB的中點(diǎn),將△BMN沿直線MN折起,使二面角B'-MN-B的大小為,則B'N與平面ABC所成角的正切值是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)F,直線y=4與y軸的交點(diǎn)為P,與拋物線C的交點(diǎn)為Q,且|QF|=2|PQ|.
(1)求p的值;
(2)已知點(diǎn)T(t,-2)為C上一點(diǎn),M,N是C上異于點(diǎn)T的兩點(diǎn),且滿足直線TM和直線TN的斜率之和為,證明直線MN恒過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】九章算術(shù)給出求羨除體積的“術(shù)”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側(cè)棱的長(zhǎng),“深”指一條側(cè)棱到另兩條側(cè)棱所在平面的距離,“袤”指這兩條側(cè)棱所在平行線之間的距離,用現(xiàn)代語(yǔ)言描述:在羨除中,,,,,兩條平行線與間的距離為h,直線到平面的距離為,則該羨除的體積為已知某羨除的三視圖如圖所示,則該羨除的體積為
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com