分析 (1)利用ABC-A1B1C1為直三棱柱,證明CC1⊥AC,利用AB2=AC2+BC2,說明AC⊥CB,證明AC⊥平面C1CB1B,推出AC⊥BC1.
(2)設(shè)CB1∩BC1=E,說明E為C1B的中點(diǎn),說明AC1∥DE,然后證明AC1∥平面CDB1.
解答 (本題滿分為14分)
解:(1)∵ABC-A1B1C1為直三棱柱,
∴CC1⊥平面ABC,AC?平面ABC,
∴CC1⊥AC…(2分)
∵AC=3,BC=4,AB=5,
∴AB2=AC2+BC2,
∴AC⊥CB …(4分)
又C1C∩CB=C,
∴AC⊥平面C1CB1B,又BC1?平面C1CB1B,
∴AC⊥BC1…(7分)
(2)設(shè)CB1∩BC1=E,
∵C1CBB1為平行四邊形,
∴E為C1B的中點(diǎn)…(10分)
又D為AB中點(diǎn),
∴AC1∥DE…(12分)
DE?平面CDB1,AC1?平面CDB1,
∴AC1∥平面CDB1…(14分)
點(diǎn)評(píng) 本題考查直線與平面垂直,直線與直線垂直,直線與平面平行的證明,考查邏輯推理能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | $\frac{8}{3}$π | C. | 16π | D. | $\frac{32}{3}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,甲比乙成績穩(wěn)定 | B. | $\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,乙比甲成績穩(wěn)定 | ||
C. | $\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,甲比乙成績穩(wěn)定 | D. | $\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,乙比甲成績穩(wěn)定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第四象限 | B. | 第三象限 | C. | 第二象限 | D. | 第一象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com