19.設(shè)圓臺(tái)的高為3,在軸截面中母線AA1與底面圓直徑AB的夾角為60°,軸截面中的一條對(duì)角線垂直于腰,求圓臺(tái)的體積.?

分析 由題意畫出圖形,設(shè)上、下底面半徑、母線長分別為r、R、l,求解直角三角形分別求出圓臺(tái)的上下底面半徑,代入圓臺(tái)體積公式得答案.

解答 解:作軸截面A1ABB1,設(shè)上、下底面半徑、母線長分別為r、R、l.?
作A1D⊥AB于D,則A1D=3,∠A1AB=60°.?
又∵∠BA1A=90°,?
∴∠BA1D=60°.?
∴AD=A1D•cot60°.?
∴R-r=3×$\frac{\sqrt{3}}{3}$=$\sqrt{3}$.?
BD=A1D•tan 60°,?
∴R+r=3×$\sqrt{3}$=$3\sqrt{3}$.?
解得:R=2$\sqrt{3}$,r=$\sqrt{3}$.?
而h=3,?
∴V圓臺(tái)=πh(R2+Rr+r2)=$\frac{1}{3}$π×3×[(2$\sqrt{3}$)2+2$\sqrt{3}$×$\sqrt{3}$+($\sqrt{3}$)2]=21π.?
∴圓臺(tái)的體積為21π.

點(diǎn)評(píng) 本題考查圓臺(tái)體積的求法,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,經(jīng)過點(diǎn)A(1,$\frac{3}{2}$)作兩條關(guān)于直線x=1對(duì)稱的直線分別交橢圓于B,C兩點(diǎn),則直線BC的斜率kBC為( 。
A.1B.$\frac{1}{2}$C.$\frac{3}{2}$D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題正確的是( 。
A.若$|{\overrightarrow a}|=|{\overrightarrow b}|$,則$\overrightarrow a=\overrightarrow b$B.若$|{\overrightarrow a}|>|{\overrightarrow b}|$,則$\overrightarrow a>\overrightarrow b$C.若$\overrightarrow a=\overrightarrow b$,則$\overrightarrow a∥\overrightarrow b$D.若$|{\overrightarrow a}|=0$,則$\overrightarrow a=0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求證:x-sinx<tanx-x,$x∈(0\;,\;\frac{π}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=x-lnx+2k,在區(qū)間[$\frac{1}{e}$,e]上任取三個(gè)數(shù)a,b,c均存在以f(a),f(b),f(c)為邊長的三角形,則k的取值范圍是( 。
A.(-1,+∞)B.(-∞,1)C.(-∞,e-3)D.($\frac{e-3}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.做投擲2個(gè)骰子試驗(yàn),用(x,y)表示點(diǎn)P的坐標(biāo),其中x表示第1個(gè)骰子出現(xiàn)的點(diǎn)數(shù),y表示第2個(gè)骰子出現(xiàn)的點(diǎn)數(shù),則點(diǎn)P的坐標(biāo)(x,y)滿足16<x2+y2≤25的概率為( 。
A.$\frac{7}{36}$B.$\frac{4}{21}$C.$\frac{2}{9}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直線l1:4x-3y+6=0和直線l2:x=-1,拋物線y2=4x上有一個(gè)動(dòng)點(diǎn)P,求點(diǎn)P到直線l1和直線l2的距離之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C的對(duì)稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)為F(0,-$\sqrt{2}}$),點(diǎn)M(1,$\sqrt{2}}$)在橢圓C上
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線l:2x-y-2=0與橢圓C交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.拋物線y2=4x的準(zhǔn)線方程為x=-1,經(jīng)過此拋物線的焦點(diǎn)和點(diǎn)M(3,1),且與準(zhǔn)線相切的圓共有2個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案