【題目】已知橢圓的左右焦點分別為,若橢圓上一點滿足,過點的直線與橢圓交于兩點.
(1)求橢圓的方程;
(2)過點作軸的垂線,交橢圓于,求證:存在實數(shù),使得.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)f(x)的單調性;
(2)若函數(shù)f(x)在定義域內恒有f(x)≤0,求實數(shù)a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知橢圓.過點(m,0)作圓的切線l交橢圓G于A,B兩點.
(I)求橢圓G的焦點坐標和離心率;
(II)將表示為m的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的單調區(qū)間;
(Ⅱ)求在區(qū)間上的最小值.
【答案】(Ⅰ);(Ⅱ).
【解析】(Ⅰ).
令,得.
與的情況如上:
所以,的單調遞減區(qū)間是,單調遞增區(qū)間是.
(Ⅱ)當,即時,函數(shù)在上單調遞增,
所以在區(qū)間上的最小值為.
當,即時,
由(Ⅰ)知在上單調遞減,在上單調遞增,
所以在區(qū)間上的最小值為.
當,即時,函數(shù)在上單調遞減,
所以在區(qū)間上的最小值為.
綜上,當時,的最小值為;
當時,的最小值為;
當時,的最小值為.
【題型】解答題
【結束】
19
【題目】已知拋物線的頂點在原點,焦點在坐標軸上,點為拋物線上一點.
(1)求的方程;
(2)若點在上,過作的兩弦與,若,求證: 直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩焦點為, , 為橢圓上一點,且到兩個焦點的距離之和為6.
(1)求橢圓的標準方程;
(2)若已知直線,當為何值時,直線與橢圓有公共點?
(3)若,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為奇函數(shù), 為偶函數(shù),且.
(1)求及的解析式及定義域;
(2)若關于的不等式恒成立,求實數(shù)的取值范圍.
(3)如果函數(shù),若函數(shù)有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com