【題目】在如圖所示的多面體ABCDE中,已知ABCD是邊長為2的正方形,平面ABCD⊥平面ABE,∠AEB=90°,AE=BE.
(1)若M是DE的中點,試在AC上找一點N,使得MN∥平面ABE,并給出證明;
(2)求多面體ABCDE的體積.
【答案】(1)見解析;(2) .
【解析】
(1)根據線面平行性質定理推得點N為AC中點,再利用線面平行判定定理給予證明,(2)先取AB的中點F,再證明EF⊥平面ABCD,最后根據錐體體積公式公式求結果.
(1)連接BD,交AC于點N,則點N即為所求,
證明如下:∵ABCD是正方形,∴N是BD的中點,又M是DE的中點,∴MN∥BE,∵BE平面ABE,MN平面ABE,∴MN∥平面ABE.
(2)取AB的中點F,連接EF,∵△ABE是等腰直角三角形,且AB=2,
∴EF⊥AB,EF=AB=1,∵平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,
EF平面ABE,∴EF⊥平面ABCD,即EF為四棱錐EABCD的高,
∴V四棱錐EABCD=S正方形ABCD·EF=×22×1=.
科目:高中數學 來源: 題型:
【題目】為調查甲、乙兩校高三年級學生某次聯考數學成績情況,現用簡單隨機抽樣從這兩個學校高三年級學生中各抽取30名,以他們的數學成績(百分制)作為樣本,樣本數據如下.
(1)若甲校高三年級每位學生被抽到的概率為0.05,求甲校高三年級學生總人數,并估計甲校高三年級這次聯考數學成績的及格率(60分及60分以上為及格);
(2)設甲、乙兩校高三年級學生這次聯考數學平均成績分別為,,估計的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn,a1=1,且數列{Sn}是以2為公比的等比數列.
(1)求數列{an}的通項公式;
(2)求a1+a3+…+a2n+1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a∈R,函數f(x)=x2﹣2ax+5.
(1)若a>1,且函數f(x)的定義域和值域均為[1,a],求實數a的值;
(2)若不等式x|f(x)﹣x2|1對x∈[,]恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某次水下考古活動中,需要潛水員潛入水深為30米的水底進行作業(yè).其用氧量包含3個方面:①下潛時,平均速度為(米/單位時間),單位時間內用氧量為(為正常數);②在水底作業(yè)需5個單位時間,每個單位時間用氧量為0.4;③返回水面時,平均速度為(米/單位時間), 單位時間用氧量為0.2.記該潛水員在此次考古活動中,總用氧量為.
(1)將表示為的函數;
(2)設0<≤5,試確定下潛速度,使總的用氧量最少.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在△ABC中,AC=BC=AB,四邊形ABED是正方形,平面ABED⊥底面ABC,G,F分別是EC,BD的中點.
(1)求證:GF∥平面ABC;
(2)求證:平面DAC⊥平面EBC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某市的交通狀況,現對其6條道路進行評估,得分分別為:5,6,7,8,9,10.規(guī)定評估的平均得分與全市的總體交通狀況等級如表
評估的平均得分 | (0,6] | (6,8] | (8,10] |
全市的總體交通狀況等級 | 不合格 | 合格 | 優(yōu)秀 |
(1)求本次評估的平均得分,并參照上表估計該市的總體交通狀況等級.
(2)用簡單隨機抽樣方法從這6條道路中抽取2條,它們的得分組成一個樣本,求該樣本的平均數與總體的平均數之差的絕對值不超0.5的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com