1.設(shè)F1和F2是雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1的兩個焦點,點P在雙曲線上,且滿足∠F1PF2=90°,若△F1PF2的面積是2,則b的值為(  )
A.$\sqrt{2}$B.$\frac{\sqrt{5}}{2}$C.2$\sqrt{2}$D.$\sqrt{5}$

分析 設(shè)|PF1|=x,|PF2|=y,根據(jù)△F1PF2的面積是2,可得xy根據(jù)雙曲線性質(zhì)可知x-y的值,再根據(jù)∠F1PF2=90°,求得x2+y2的值,進而根據(jù)2xy=x2+y2-(x-y)2求得結(jié)論.

解答 解:設(shè)|PF1|=x,|PF2|=y,(x>y),
∵△F1PF2的面積是2,∴$\frac{1}{2}$xy=2,∴xy=4
根據(jù)雙曲線性質(zhì)可知x-y=4,
∵∠F1PF2=90°,
∴x2+y2=16+4b2,
∴2xy=x2+y2-(x-y)2=4b2=8
∴b=$\sqrt{2}$
故選A.

點評 本題主要考查了雙曲線的簡單性質(zhì).要靈活運用雙曲線的定義及焦距、實軸、虛軸等之間的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=x2+(a2+b2-9)x+a+b+ab為偶函數(shù),則函數(shù)的圖象與y軸交點的縱坐標的最大值與最小值的和為3$\sqrt{2}$-$\frac{11}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.為得到函數(shù)y=sin(2x+$\frac{π}{6}$)的圖象,只需將函數(shù)y=sin2x的圖象(  )
A.向左平移$\frac{π}{3}$個長度單位B.向左平移$\frac{π}{6}$個長度單位
C.向左平移$\frac{π}{12}$個長度單位D.向右平移$\frac{π}{12}$個長度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是(  )
A.13B.11C.9D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|(x-3)(x+1)≥0},$B=\{y|y<-\frac{4}{5}\}$,則A∩B=( 。
A.{x|x≤-1}B.{x|x≥3}C.$\{x|x<-\frac{5}{4}\}$D.$\{x|-\frac{5}{4}≤x<-1\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.三棱錐P-ABC中,PC⊥平面ABC,F(xiàn),G,H,分別是PC,AC,BC的中點,I是線段FG上任意一點,PC=AB=2BC=2.
(1)求證:HI∥平面PAB;
(2)若AC⊥BC,求點C到平面FGH的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=$\frac{4x-2}{x+1}$,由x1=a,xn+1=f(xn)產(chǎn)生的無窮數(shù)列{xn},對任意正整數(shù)n均有xn<xn+1成立,則a的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,一個正六角星薄片(其對稱軸與水平面垂直)勻速地升長水面,直到全部露出水面為止,記時刻t薄片露出水面部分的圖形面積為S(t)(S(0)=0),則導(dǎo)函數(shù)y=S'(x)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,內(nèi)角為A,B,C,若sinA=sinCcosB,則△ABC的形狀一定是直角三角形.

查看答案和解析>>

同步練習(xí)冊答案