4.若命題P:?x∈R,2x+x2>0,則¬P為?x0>0,2${\;}^{{x}_{0}}$+x02≤0.

分析 根據(jù)全稱命題的否定是特稱命題即可得到結論.

解答 解:命題是全稱命題,
則¬p為:?x0>0,2${\;}^{{x}_{0}}$+x02≤0,
故答案為:?x0>0,2${\;}^{{x}_{0}}$+x02≤0

點評 本題主要考查含有量詞的命題的否定,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.在△ABC中,已知b=3,A=45°,B=60°,則a=$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知直線l1:x+2y+t2=0和直線l2:2x+4y+2t-3=0,則當l1與l2間的距離最短時t的值為( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.對于滿足0<b<3a的任意實數(shù)a,b,函數(shù)f(x)=ax2+bx+c總有兩個不同的零點,則$\frac{a+b-c}{a}$的取值范圍是( 。
A.$({1,\frac{7}{4}}]$B.(1,2]C.[1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.“a>b“是“a3>b3”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.Sn為數(shù)列{an}的前n項和,已知an>0,an2+an=2Sn
(Ⅰ)求{an}的通項公式;
(Ⅱ)若bn=$\frac{2}{{a}_{n}•{a}_{n+2}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知直線l1:(3+m)x-4y=5-3m,l2:2x-y=8平行,則實數(shù)m的值為( 。
A.5B.-5C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知直線l經(jīng)過直線3x+4y-2=0與直線x-y+4=0的交點P,且垂直于直線x-2y-1=0
(Ⅰ)求直線l的方程
(Ⅱ)直線l與曲線y2+2x=0交于A,B兩點,求|AB|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)y=$\frac{1-{2}^{x}}{{2}^{x}+3}$的值域是(-1,$\frac{1}{3}$).

查看答案和解析>>

同步練習冊答案