A. | 相離 | B. | 外切 | C. | 相交 | D. | 內(nèi)切 |
分析 把圓的方程化為標(biāo)準(zhǔn)形式,求出圓心和半徑,根據(jù)兩圓的圓心距等于半徑之和,可得兩個(gè)圓關(guān)系.
解答 解:圓C1:x2+y2=4,表示以C1(0,0)為圓心,半徑等于2的圓.
圓C2:x2+y2+6x-8y+16=0,即 (x+3)2+(y-4)2=9,表示以C2(-3,4)為圓心,半徑等于3的圓.
∴兩圓的圓心距d=$\sqrt{9+16}$=5=2+3,
∵兩個(gè)圓外切.
故選:B.
點(diǎn)評(píng) 本題主要考查圓的標(biāo)準(zhǔn)方程,圓和圓的位置關(guān)系,圓的標(biāo)準(zhǔn)方程的求法,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(4,6+4\sqrt{2})$ | B. | $(4,6+4\sqrt{2}]$ | C. | $[6+4\sqrt{2},+∞)$ | D. | $(6+4\sqrt{2},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
喜歡閱讀國(guó)學(xué)類 | 不喜歡閱讀國(guó)學(xué)類 | 合計(jì) | |
男 | 14 | 4 | 18 |
女 | 8 | 14 | 22 |
合計(jì) | 22 | 18 | 40 |
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | $\sqrt{5}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 17 | C. | 19 | D. | 21 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com