分析 (1)連接AF,通過(guò)計(jì)算利用勾股定理證明DF⊥AF,證明DF⊥PA,推出DF⊥平面PAF,然后證明DF⊥PF.
(2)利用等體積方法,求點(diǎn)E到平面PFD的距離.
解答 (1)證明:連接AF,則AF=$\sqrt{2}$,DF=$\sqrt{2}$,
又AD=2,∴DF2+AF2=AD2,∴DF⊥AF,
又PA⊥平面ABCD,∴DF⊥PA,又PA∩AF=A,
∴DF⊥平面PAF,
又PF?平面PAF,
∴DF⊥PF.
(2)解:∵S△EFD=2-$\frac{5}{4}$=$\frac{3}{4}$,
∴VP-EFD=$\frac{1}{3}×\frac{3}{4}×1$=$\frac{1}{4}$,
∵VE-PFD=VP-AFD,
∴$\frac{1}{3}×\frac{\sqrt{6}}{2}h=\frac{1}{4}$,解得h=$\frac{\sqrt{6}}{4}$,即點(diǎn)E到平面PFD的距離為$\frac{\sqrt{6}}{4}$.
點(diǎn)評(píng) 本題考查直線與平面垂直的判定定理以及性質(zhì)定理的應(yīng)用,點(diǎn)到平面的距離距離的求法,考查計(jì)算能力以及空間想象能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<c<b | B. | b<a<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10日 | B. | 20日 | C. | 30日 | D. | 40日 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 相離 | B. | 外切 | C. | 相交 | D. | 內(nèi)切 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{18}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com