如圖所示,在多面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,BAACEDDG,EFDG,且AC=1,ABEDEF=2,ADDG=4.
 
(1)求證:BE⊥平面DEFG;
(2)求證:BF∥平面ACGD
(3)求二面角FBCA的余弦值.

(1)見解析(2)見解析(3)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,正三棱柱所有棱長都是2,D棱AC的中點(diǎn),E是棱的中點(diǎn),AE交于點(diǎn)H.

(1)求證:平面;
(2)求二面角的余弦值;
(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐O—ABCD中,底面ABCD是邊長為1的正方形,OA⊥底面ABCD,OA=2,M為OA中點(diǎn)。

(1)求證:直線BD⊥平面OAC;
(2)求直線MD與平面OAC所成角的大;
(3)求點(diǎn)A到平面OBD的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖1,A,D分別是矩形A1BCD1上的點(diǎn),AB=2AA1=2AD=2,DC=2DD1,把四邊形A1ADD1沿AD折疊,使其與平面ABCD垂直,如圖2所示,連接A1B,D1C得幾何體ABA1­DCD1.

(1)當(dāng)點(diǎn)E在棱AB上移動(dòng)時(shí),證明:D1E⊥A1D;
(2)在棱AB上是否存在點(diǎn)E,使二面角D1­EC­D的平面角為?若存在,求出AE的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直三棱柱(側(cè)棱垂直于底面的棱柱),底面,棱,分別為的中點(diǎn).

(1)求>的值;
(2)求證: 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱ABC­A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,A1AMCC1的中點(diǎn).

(1)求證:A1BAM;
(2)求二面角B­AM­C的平面角的大小..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在中,,,點(diǎn)在邊上,設(shè),過點(diǎn),作。沿翻折成使平面平面;沿翻折成使平面平面

(1)求證:平面
(2)是否存在正實(shí)數(shù),使得二面角的大小為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直三棱柱中,AA1=AB=BC=3,AC=2,D是AC的中點(diǎn).

(1)求證:B1C∥平面A1BD;
(2)求平面A1DB與平面DBB1夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,三棱柱ABC-A1B1C1中,CA=CB,AB="A" A1,∠BA A1=60°.

(Ⅰ)證明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C 與平面BB1C1C所成角的正弦值。

查看答案和解析>>

同步練習(xí)冊答案