2.已知變量x,y滿足$\left\{\begin{array}{l}x-3y+3≤0\\ x≥1\\ x+y-4≤0\end{array}\right.$則$\frac{x}{y}$的最大值是(  )
A.$\frac{9}{7}$B.3C.$\frac{3}{4}$D.$\frac{7}{9}$

分析 畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,轉(zhuǎn)化求解即可.

解答 解:令$k=\frac{y}{x}$,則k表示可行域內(nèi)的點與原點連線的斜率,變量x,y滿足$\left\{\begin{array}{l}x-3y+3≤0\\ x≥1\\ x+y-4≤0\end{array}\right.$的可行域如圖:

由圖形可知kOA≤k≤kOB,聯(lián)立方程$\left\{\begin{array}{l}{x-3y+3=0}\\{x+y-4=0}\end{array}\right.$與$\left\{\begin{array}{l}{x=1}\\{x+y-4=0}\end{array}\right.$可以求出$A({\frac{9}{4},\frac{7}{4}}),B({1,3})$,
所以$\frac{7}{9}≤k≤3$,
故$\frac{1}{k}$的最大值為$\frac{9}{7}$.
故選:A.

點評 本題考查線性規(guī)劃,判斷目標(biāo)函數(shù)的幾何意義是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.點M,N分別是正方體ABCD-A1B1C1D1的棱BB1和B1C1的中點,則MN和CD1所成角的大小為( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=2.5cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,M、N兩點之間的距離為13,且f(3)=0,若將函數(shù)f(x)的圖象向右平移t(t>0)個單位長度后所得函數(shù)的圖象關(guān)于坐標(biāo)原點對稱,則t的最小值為(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,四棱錐P-ABCD底面為正方形,已知PD⊥平面ABCD,PD=AD,點M為線段PA上任意一點(不含端點),點N在線段BD上,且PM=DN.
(1)求證:直線MN∥平面PCD;
(2)若PD=2,M為線段PA中點,求三棱錐P-MNB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1}{3}$x3-x2+x.
(1)求函數(shù)f(x)在[-1,2]上的最大值和最小值;
(2)若函數(shù)g(x)=f(x)-4x,x∈[-3,2],求g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.一圓錐的側(cè)面展開圖恰好是一個半徑為4的半圓,則圓錐的高等于2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知偶函數(shù)f(x)在區(qū)間(-∞,0]內(nèi)單調(diào)遞減,a=f(log23),b=f(log45),$c=f({2^{\frac{1}{2}}})$,則a,b,c滿足( 。
A.a<b<cB.c<a<bC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直線x=a分別與曲線y=2(x+1),y=x+lnx交于A、B兩點,則|AB|的最小值為(  )
A.3B.2C.$\frac{3\sqrt{2}}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點,作EF⊥PB交PB于點F.
證明:(1)PA∥平面EDB;
(2)PB⊥平面EFD;
(3)點F到平面BDE的距離.

查看答案和解析>>

同步練習(xí)冊答案