2.如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
證明:(1)PA∥平面EDB;
(2)PB⊥平面EFD;
(3)點(diǎn)F到平面BDE的距離.

分析 (1)由題意連接AC,AC交BD于O,連接EO,則EO是中位線,證出PA∥EO,由線面平行的判定定理知PA∥平面EDB;
(2)由PD⊥底面ABCD得PD⊥DC,再由DC⊥BC證出BC⊥平面PDC,即得BC⊥DE,再由ABCD是正方形證出DE⊥平面PBC,則有DE⊥PB,再由條件證出PB⊥平面EFD;
(3)通過(guò)求解三角形可得BE、BF、EF的長(zhǎng)度,然后利用等積法求點(diǎn)F到平面BDE的距離.

解答 (1)證明:連接AC,AC交BD于O,連接EO.
∵底面ABCD是正方形,∴點(diǎn)O是AC的中點(diǎn).
∴在△PAC中,EO是中位線,得PA∥EO,
∵EO?平面EDB,且PA?平面EDB,
∴PA∥平面EDB;
(2)證明:∵PD⊥底面ABCD,且DC?底面ABCD,∴PD⊥BC.
∵底面ABCD是正方形,∴DC⊥BC,
∴BC⊥平面PDC.
∵DE?平面PDC,∴BC⊥DE.
又∵PD=DC,E是PC的中點(diǎn),∴DE⊥PC,則DE⊥平面PBC.
∵PB?平面PBC,∴DE⊥PB.
又∵EF⊥PB,且DE∩EF=E,
∴PB⊥平面EFD;
(3)∵PD=DC=2,PC=2$\sqrt{2}$,PB=2$\sqrt{3}$,PE=$\sqrt{2}$,
∵$\frac{EF}{PE}=\frac{BC}{PB}$,∴EF=$\frac{\sqrt{6}}{3}$,PF=$\frac{2\sqrt{3}}{3}$,F(xiàn)B=2$\sqrt{3}$-$\frac{2\sqrt{3}}{3}=\frac{4\sqrt{3}}{3}$,
DE=$\sqrt{2}$,BD=2$\sqrt{2}$,BE=$\sqrt{D{B}^{2}-D{E}^{2}}=\sqrt{6}$.
設(shè)點(diǎn)F到平面BDE的距離為h,
由VB-EFD=VD-BEF,得$\frac{1}{3}×\frac{1}{2}×DE×EF×BF=\frac{1}{3}×\frac{1}{2}×DE×BE×h$,
∴h=$\frac{EF×BF}{BE}$=$\frac{\frac{\sqrt{6}}{3}×\frac{4\sqrt{3}}{3}}{\sqrt{6}}=\frac{4\sqrt{3}}{9}$.

點(diǎn)評(píng) 本題主要考查線面平行和線面垂直的判定,要求熟練掌握相應(yīng)的判定定理,考查空間想象能力和思維能力,訓(xùn)練了利用等積法求多面體的體積,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知變量x,y滿足$\left\{\begin{array}{l}x-3y+3≤0\\ x≥1\\ x+y-4≤0\end{array}\right.$則$\frac{x}{y}$的最大值是(  )
A.$\frac{9}{7}$B.3C.$\frac{3}{4}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在四邊形ABCD中,若AB=2,$BC=2\sqrt{2}$,$AD=\sqrt{2}CD$,$\overrightarrow{AC}\overrightarrow{•CD}=0$,則$|{\overrightarrow{BD}}|$的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.某椎體的三視圖如圖所示,則該棱錐的最長(zhǎng)棱的棱長(zhǎng)為( 。
A.$\sqrt{33}$B.$\sqrt{17}$C.$\sqrt{41}$D.$\sqrt{42}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x2-4x+3.
(1)求f(x)在區(qū)間[0,m]上的最小值;
(2)在給出的直角坐標(biāo)系中,作出函數(shù)g(x)=f(|x|)的圖象,并根據(jù)圖象寫出其單調(diào)減區(qū)間;
(3)若關(guān)于x的方程f(|x|)-a=x至少有三個(gè)不相等的實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知復(fù)數(shù)z滿足$\frac{1-i}{\overline{z}}$=i(其中i為虛數(shù)單位),則z2=(  )
A.2iB.-2iC.2+2iD.2-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知$\overrightarrow{a}$=($\sqrt{3}$,-1),$\overrightarrow$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),且存在常數(shù)k和t,使得x=$\overrightarrow{a}$+(t-3)$\overrightarrow$,y=-k$\overrightarrow{a}$+t$\overrightarrow$,且x⊥y
(1)求k與t的函數(shù)關(guān)系式k=f(t);
(2)求函數(shù)f(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.無(wú)錫市要建造一條防洪堤,其橫斷面為等腰梯形,腰與底邊成角為60°(如圖),考慮到防洪堤堅(jiān)固性及石塊用料等因素,設(shè)計(jì)基橫斷面要求面積為$6\sqrt{3}$平方米,且高度不低于$\sqrt{3}$米,記防洪堤橫斷面的腰長(zhǎng)為x(米),外周長(zhǎng)(梯形的上底線段BC與兩腰長(zhǎng)的和)為y(米).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并指出其定義域;
(2)當(dāng)防洪堤的腰長(zhǎng)x為多少米時(shí),堤的上面與兩側(cè)面的水泥用料最。磾嗝娴耐庵荛L(zhǎng)最。?求此時(shí)外周長(zhǎng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在正三棱柱ABC-A1B1C1中,AB=2,AA1=3,點(diǎn)D為BC的中點(diǎn).
(Ⅰ)求證:A1B∥平面AC1D;
(Ⅱ)若點(diǎn)E為A1C上的點(diǎn),且滿足A1E=mEC(m∈R),三棱錐E-ADC的體積與三棱柱ABC-A1B1C1的體積之比為1:12,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案