【題目】已知菱形中,對(duì)角線與相交于一點(diǎn), ,將沿著折起得,連接.
(1)求證:平面平面;
(2)若點(diǎn)在平面上的投影恰好是的重心,求直線與底面所成角的正弦值.
【答案】(1)見(jiàn)解析;(2).
【解析】試題分析:(Ⅰ)只需證明, , , 平面,
即可得平面平面平面;
(Ⅱ)設(shè)在平面上的投影為,即平面,過(guò)點(diǎn)作交于點(diǎn),過(guò)點(diǎn)作于點(diǎn),連結(jié),并過(guò)作于點(diǎn),即可證得是與底面所成的角,進(jìn)而求解.
試題解析:
(1)因?yàn)?/span>, , ,所以平面,又因?yàn)?/span>平面,所以平面平面;
(2)方法一:設(shè)在平面上的投影為,即平面,
過(guò)點(diǎn)作交于點(diǎn),過(guò)點(diǎn)作于點(diǎn),
連結(jié),并過(guò)作于點(diǎn),
因?yàn)?/span>平面,即,且有,
,所以平面,即,
又因?yàn)?/span>,且,故平面,
從而知是與底面所成的角,
設(shè),則在中有, ,所以,故與底面所成角的正弦值為,即與底面所成角的正弦值為.
(2)方法二:如圖建系,
令,則知, , , ,
即,平面的法向量為,
故與底面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高中為了解高中學(xué)生的性別和喜愛(ài)打籃球是否有關(guān),對(duì)50名高中學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表:
喜愛(ài)打籃球 | 不喜歡打籃球 | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) |
已知在這50人中隨機(jī)抽取1人,抽到喜歡打籃球的學(xué)生的概率為.
(1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;
(2)判斷是否有99.5%的把握認(rèn)為喜歡打籃球與性別有關(guān)?
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) (為常數(shù),是自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在內(nèi)存在兩個(gè)極值點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將圓上每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的,得曲線C.
(Ⅰ)寫(xiě)出C的參數(shù)方程;
(Ⅱ)設(shè)直線l: 與C的交點(diǎn)為P1,P2,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段P1 P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,四邊形中, , ,將四邊形沿著折疊,得到圖2所示的三棱錐,其中.
(1)證明:平面平面;
(2)若為中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
⑴求函數(shù)的單調(diào)區(qū)間;
⑵如果對(duì)于任意的, 恒成立,求實(shí)數(shù)的取值范圍;
⑶設(shè)函數(shù), .過(guò)點(diǎn)作函數(shù)的圖象
的所有切線,令各切點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列,求數(shù)列的所有項(xiàng)之和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為豐富人民群眾業(yè)余生活,某市擬建設(shè)一座江濱公園,通過(guò)專(zhuān)家評(píng)審篩選處建設(shè)方案A和B向社會(huì)公開(kāi)征集意見(jiàn),有關(guān)部分用簡(jiǎn)單隨機(jī)抽樣方法調(diào)查了500名市民對(duì)這兩種方案的看法,結(jié)果用條形圖表示如下:
(1)根據(jù)已知條件完成下面列聯(lián)表,并用獨(dú)立性檢驗(yàn)的方法分析,能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為是否選擇方案A和年齡段有關(guān)?
(2)根據(jù)(1)的結(jié)論,能否提出一個(gè)更高的調(diào)查方法,使得調(diào)查結(jié)果更具代表性,說(shuō)明理由.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,所有棱長(zhǎng)都相等的直四棱柱 中,中點(diǎn)為.
(1)求證:平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如甲圖所示,在矩形中, , , 是的中點(diǎn),將沿折起到位置,使平面平面,得到乙圖所示的四棱錐.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com