在平面直角坐標(biāo)系中,若不等式組
x+y-1≥0
x-1≤0
ax-y+1≥0
(α為常數(shù))所表示的平面區(qū)域內(nèi)的面積等于2,則a的值為多少?
考點(diǎn):簡單線性規(guī)劃
專題:計算題
分析:先根據(jù)約束條件畫出可行域,求出可行域頂點(diǎn)的坐標(biāo),再利用幾何意義求關(guān)于面積的等式求出a值即可.
解答: 解:當(dāng)a<0時,不等式組所表示的平面區(qū)域,
如圖中的M,一個無限的角形區(qū)域,面積不可能為2,
故只能a≥0,
此時不等式組所表示的平面區(qū)域如圖中的N,區(qū)域為三角形區(qū)域,
若這個三角形的面積為2,
則AB=4,即點(diǎn)B的坐標(biāo)為(1,4),
代入y=ax+1得a=3.
故答案為:3.
點(diǎn)評:本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-6x+5,x∈[1,a],并且函數(shù)f(x)的最大值為f(a),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2+ax+3,x∈[0,2]
(Ⅰ)若a=2,求f(x)的最值,并說明當(dāng)f(x)取最值時的x的值;
(Ⅱ)若f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于區(qū)間[a,b]上有意義的兩個函數(shù)f(x)與g(x),如果對于區(qū)間[a,b]中的任意數(shù)x均有|f(x)-g(x)|≤1,則稱函數(shù)f(x)與g(x)在區(qū)間[a,b]上是密切函數(shù),[a,b]稱為密切區(qū)間.若m(x)=x2-3x+4與n(x)=2x-3在某個區(qū)間上是“密切函數(shù)”,則它的一個密切區(qū)間可能是
 

①[3,4]②[2,4]③[2,3]④[1,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(sin2x,-y),
b
=(m,-m+cos2x)(m∈R),且
a
+
b
=
0
,設(shè)y=f(x).
(I)求y=f(x)的表達(dá)式,并求其對稱中心M的坐標(biāo);
(II)若對?x∈[0,
π
2
],f(x)>t+1恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式1-4x2≥0的解集是(區(qū)間表示)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
b
不共線,若存在非零實(shí)數(shù)x,y,使得
c
=
a
+2x
b
,
d
=-y
a
+2(2-x2
b

(1)當(dāng)
c
=
d
時,求x,y的值;
(2)若
a
=(cos
π
6
,sin(-
π
6
)
),
b
=(sin
π
6
,cos
π
6
),且
c
d
,試求函數(shù)y=f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一顆正方體骰子,共六個面的點(diǎn)數(shù)分別是1、2、3、4、5、6,將這顆骰子連續(xù)擲三次觀察向上的點(diǎn)數(shù),則三次點(diǎn)數(shù)和為16的概率是( 。
A、
1
6
B、
1
18
C、
1
36
D、
1
72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式a>2sinxcosx+
3
cos2x
恒成立,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案