若函數(shù)g(x)=asinxcosx(a>0)的最大值為
1
2
,則函數(shù)f(x)=sinx+acosx的圖象的一條對稱軸方程為( 。
A、x=0
B、x=-
4
C、x=-
π
4
D、x=-
4
考點(diǎn):正弦函數(shù)的對稱性,三角函數(shù)中的恒等變換應(yīng)用
專題:計(jì)算題,三角函數(shù)的圖像與性質(zhì)
分析:依題意,可求得a=1,于是可知f(x)=sinx+cosx=
2
sin(x+
π
4
),利用其對稱性可求得其對稱軸方程,從而可得答案.
解答: 解:∵a>0,g(x)=asinxcosx=
a
2
sin2x的最大值為
1
2
,
a
2
=
1
2
,
∴a=1,
∴f(x)=sinx+acosx
=sinx+cosx
=
2
sin(x+
π
4
),
由x+
π
4
=kπ+
π
2
(k∈Z)得:x=kπ+
π
4
(k∈Z),
∴函數(shù)f(x)=sinx+cosx的圖象的對稱軸方程為:x=kπ+
π
4
(k∈Z),
當(dāng)k=-1時(shí),x=-
4
,
∴函數(shù)f(x)=sinx+cosx的圖象的一條對稱軸方程為x=-
4
,
故選:B.
點(diǎn)評:本題考查正弦函數(shù)的對稱性,著重考查三角函數(shù)中的恒等變換應(yīng)用,考查轉(zhuǎn)化思想與運(yùn)算求解能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若(1-2x)49(2-x)=a0+a1(x-1)+a2(x-1)2+…+a50(x-1)50,則a1+a2+…+a50=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(sinx+cosx)2的最小正周期為( 。
A、2π
B、π
C、
π
2
D、
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若 m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個(gè)命題:
①y=f(x)的定義域是R,值域是(-
1
2
,
1
2
];
②點(diǎn)(k,0)是y=f(x)的圖象的對稱中心,其中k∈Z;
③函數(shù)y=f(x)的最小正周期為1;
④函數(shù)y=f(x)在(-
1
2
,
3
2
]上是增函數(shù).
則上述命題中真命題的序號是( 。
A、①④B、①③C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先將函數(shù)y=f(x)的圖象向右移
π
6
個(gè)單位,再將所得的圖象作關(guān)于直線x=
π
4
的對稱變換,得到y=sin(-2x+
π
3
)
的函數(shù)圖象,則f(x)的解析式是( 。
A、y=sin(-2x+
π
3
)
B、y=sin(-2x-
π
3
)
C、y=sin(2x-
π
3
)
D、y=sin(2x+
π
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+(b-|a|)x2+(a2-4b)x是奇函數(shù),則f′(0)的最小值是(  )
A、-4B、0C、1D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
x
a
cosθ+
y
b
sinθ=1,
x
a
sinθ-
y
b
cosθ=1.求證:
x2
a2
+
y2
b2
=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-3x+2=0},B={x|x2+(a+1)x+(a2-14)=0},若A∩B=A,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式:
(1)方程組
x2+6x+8>0
|2x+3|<11
;
(2)x2-2|x|-15>0;
(3)|3x-2|-|2x+3|<7.

查看答案和解析>>

同步練習(xí)冊答案