已知橢圓x2+2y2=8過點(diǎn)P(2,1)引一條弦且弦被點(diǎn)P平分,求弦所在直線方程.
考點(diǎn):直線與圓錐曲線的關(guān)系
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)弦的端點(diǎn)坐標(biāo)為(x1,y1),(x2,y2),則x1+x2=4,y1+y2=2,代入橢圓方程可得,x12+2y12=8,x22+2y22=8,兩個(gè)方程作差可求得直線斜率,利用點(diǎn)斜式可得直線方程,注意檢驗(yàn).
解答: 解:設(shè)弦的端點(diǎn)坐標(biāo)為(x1,y1),(x2,y2),則x1+x2=4,y1+y2=2,
代入橢圓方程可得,x12+2y12=8,①,
x22+2y22=8②
①-②得,(x1+x2)(x1-x2)+2(y1+y2)(y1-y2)=0
y1-y2
x1-x2
=-
x1+x2
2(y1+y2)
=-1,
由點(diǎn)斜式方程可得直線方程為:y-1=-1•(x-2),即x+y-3=0,
經(jīng)檢驗(yàn)符合題意.
點(diǎn)評(píng):本題考查直線與橢圓的位置關(guān)系,屬中檔題,涉及弦中點(diǎn)問題常采取“平方差法”解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式:x2-ax+1>0在區(qū)間[
1
2
,2]上恒成立,求參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)訄AP經(jīng)過點(diǎn)F(2,0),且與直線x=-2相切.
(1)求動(dòng)圓的圓心P的軌跡M的方程;
(2)若A,B,C,D是軌跡M上的四個(gè)點(diǎn),且滿足
OF
=m
OA
+n
OB
,
OF
=r
OC
+s
OD
FA
FC
=0,其中O為原點(diǎn),m,n,r,s∈R,且m+n=r+s=1,試判斷以A,B,C,D為頂點(diǎn)的四邊形的面積是否有最小值?若有,求出最小值;若沒有,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-
1
x
|.
(1)證明f(x)的奇偶性并證明;
(2)試在所給的坐標(biāo)系中作出函數(shù)f(x)的圖象;
(3)根據(jù)圖象寫出f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x-
1
x
11的展開式中二項(xiàng)式系數(shù)最大的項(xiàng)是第
 
項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ≠±1,用sinθ表示cosθ和tanθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-
π
2
<x<0,則sinx+cosx=
1
5

(I)求sinx-cosx的值;
(Ⅱ)求
3sin2
x
2
-2sin
x
2
cos
x
2
+cos
2x
2
tanx+
1
tanx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司有價(jià)值a萬元的一條流水線,要提高該流水線的生產(chǎn)能力,就要對(duì)其進(jìn)行技術(shù)改造,從而提高產(chǎn)的附加值.改造需要投入,假設(shè)附加值y(萬元)與技術(shù)改造投入x(萬元)之間的關(guān)系滿足:①y與(a-x)和x2的乘積成正比;②當(dāng)x=
a
4
時(shí),y=
3a3
16
;③0≤
x
2(a-x)
≤t,其中常數(shù)t∈(0,2].
(1)設(shè)y=f(x),求函數(shù)f(x)的解析式并求f(x)的定義域;
(2)求出附加值y的最大值,并求此時(shí)的技術(shù)改造投入x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程x4-2x2-1=a,x∈[-1,2]有四個(gè)不同的根,求實(shí)數(shù)a的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案