19.一組數(shù)據(jù)8,12,10,11,9的均值為10.

分析 利用平均數(shù)定義直接求解.

解答 解:一組數(shù)據(jù)8,12,10,11,9的均值為:
$\overline{x}$=$\frac{1}{5}$(8+12+10+11+9)=10.
故答案為:10.

點評 本題考查平均值的求法,是基礎題,解題時要認真審題,注意平均數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=sin2x+2$\sqrt{3}$sinxcosx+3cos2x+α的最大值與最小值之和為-2.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求使得函數(shù)f(x)≥0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在△ABC中,$a=2\sqrt{3}$,b=3,$cosA=-\frac{1}{3}$.
(Ⅰ)求sinB;
(Ⅱ)設BC的中點為D,求中線AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知三棱錐P-ABC的底面是邊長為3的正三角形,PA⊥底面ABC,且PA=6,則該三棱錐的外接球的體積是(  )
A.48πB.32$\sqrt{3}$πC.18$\sqrt{3}$πD.8$\sqrt{3}$π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知拋物線C:y2=2px(p>0)的焦點F與橢圓C':$\frac{x^2}{6}+\frac{y^2}{5}$=1的一個焦點重合,點A(x0,2)在拋物線上,過焦點F的直線l交拋物線于M、N兩點.
(1)求拋物線C的方程以及|AF|的值;
(2)記拋物線C的準線與x軸交于點B,若$\overrightarrow{MF}=λ\overrightarrow{FN}$,|BM|2+|BN|2=40,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.一根繩子長為5米,若將其剪為兩段,則其中一段大于3米的概率為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.現(xiàn)將6人A,B,C,D,E,F(xiàn)隨機排成一排,則事件“A與B相鄰,且A與C不相鄰”的概率為$\frac{4}{15}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知命題p:?x∈R,使sinx≥1,則¬p為( 。
A.?x∈R,使sinx≠1B.?x∈R,使sinx<1C.?x∈R,使sinx<1D.?x∉R,使sinx≠1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了5次試驗,得到5組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),(x4,y4)(x5,y5).根據(jù)收集到的數(shù)據(jù)可知$\overrightarrow{x}$=20,由最小二乘法求得回歸直線方程為$\stackrel{∧}{y}$=0.6x+48,則$\sum_{i=1}^5{y_i}$=( 。
A.60B.120C.150D.300

查看答案和解析>>

同步練習冊答案