分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),分別計(jì)算f(1),f′(1)的值,求出切線方程即可;
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅲ)問題轉(zhuǎn)化為a≥$\frac{lnx}{x}$在(0,4]恒成立,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
解答 解:(Ⅰ)a=1時,f(x)=lnx-x,f′(x)=$\frac{1}{x}$-1=$\frac{1-x}{x}$,
故f(1)=-1,f′(1)=0,
故切線方程是:y+1=0,即y=-1;
( II)f′(x)=$\frac{1}{x}$-a=$\frac{1-ax}{x}$,(x>0)
①當(dāng)a≤0時,由于x>0,得:1-ax>0,f′(x)>0,
所以f(x)的單調(diào)遞增區(qū)間為(0,+∞),
②當(dāng)a>0時,f′(x)=0,得x=$\frac{1}{a}$,
在區(qū)間(0,$\frac{1}{a}$)上,f′(x)>0,
在區(qū)間($\frac{1}{a}$,+∞)上,f′(x)<0,
所以f(x)的單調(diào)遞增區(qū)間為(0,$\frac{1}{a}$),
單調(diào)遞減區(qū)間為($\frac{1}{a}$,+∞);
( III)如果f(x)≤0在(0,4]上恒成立,
即a≥$\frac{lnx}{x}$在(0,4]恒成立,
令h(x)=$\frac{lnx}{x}$,x∈(0,4],
h′(x)=$\frac{1-lnx}{{x}^{2}}$,
令h′(x)>0,解得:0<x<e,
令h′(x)<0,解得:e<x≤4,
故h(x)在(0,e)遞增,在(e,4]遞減,
故h(x)max=h(e)=$\frac{1}{e}$,
故a≥$\frac{1}{e}$.
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(sinA)•sin2B>f(sinB)•sin2A | B. | f(sinA)•sin2B<f(sinB)•sin2A | ||
C. | f(cosA)•sin2B>f(sinB)•cos2A | D. | f(cosA)•sin2B<f(sinB)•cos2A |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-1)2+(y+2)2=4 | B. | (x-2)2+(y+2)2=2 | C. | (x-2)2+(y+2)2=4 | D. | (x-2$\sqrt{2}$)2+(y+2$\sqrt{2}$)2=4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | -4 | C. | 6 | D. | -6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com