1.求值:
(1)${8^{\frac{2}{3}}}-{({0.5})^{-3}}+{({\frac{1}{{\sqrt{3}}}})^{-2}}×{({\frac{81}{16}})^{-\frac{1}{4}}}$;
(2)$lg5•lg8000+{({lg{2^{\sqrt{3}}}})^2}+{e^{ln1}}+ln({e\sqrt{e}})$.

分析 (1)利用有理數(shù)指數(shù)冪性質(zhì)、運(yùn)算法則求解.
(2)利用對數(shù)性質(zhì)、運(yùn)算法則求解.

解答 解:(1)${8^{\frac{2}{3}}}-{({0.5})^{-3}}+{({\frac{1}{{\sqrt{3}}}})^{-2}}×{({\frac{81}{16}})^{-\frac{1}{4}}}$
=4-8+2=-2.…(6分)
(2)$lg5•lg8000+{({lg{2^{\sqrt{3}}}})^2}+{e^{ln1}}+ln({e\sqrt{e}})$=$lg5({3+3lg2})+3{({lg2})^2}+1+\frac{3}{2}$
=$3lg5+3lg2({lg5+lg2})+\frac{5}{2}$
=3(lg5+lg2)+$\frac{5}{2}$=$\frac{11}{2}$.…(12分)

點(diǎn)評 本題考查有理數(shù)指數(shù)冪、對數(shù)的化簡求值,是基礎(chǔ)題,解題時要認(rèn)真審題,注意有理指數(shù)冪、對數(shù)的性質(zhì)及運(yùn)算法則的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出下列關(guān)系:①$\frac{1}{2}$∈Z;②$\sqrt{2}$∈Q;③|-3|∈N+;④3.14∈Q;⑤0∈∅,其中正確的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)對任意實(shí)數(shù)x,y滿足f(x)+f(y)=f(x+y)+3,f(3)=6,當(dāng)x>0時,f(x)>3,那么,當(dāng)f(a2-a-5)<4時,實(shí)數(shù)a的取值范圍是(-2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示,在正方體ABCD-A1B1C1D1中,直線AB1與直線BD1所成的角的大小為( 。
A.45°B.90°C.60°D.以上答案都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知長方體ABCD-A1B1C1D1中,AA1=AB=2,若棱AB上存在點(diǎn)P使D1P⊥PC,則棱AD的長的取值范圍是0<AD≤1;此時若AD取得最大值時,長方體外接球的表面積為9π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)f(2x)的定義域?yàn)椋?2,5),則函數(shù)f(x-2)的定義域?yàn)椋ā 。?table class="qanwser">A.(-3,$\frac{1}{2}$)B.(-2,12)C.(1,$\frac{9}{2}$)D.(-4,10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a=log${\;}_{\frac{1}{3}}$2,b=2${\;}^{-\frac{1}{3}}$,c=ln3,則( 。
A.a>b>cB.b>a>cC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,網(wǎng)格上小正方形的邊長為1,粗線畫出的是某空間幾何體的三視圖,則該幾何體的棱長不可能為( 。
A.$4\sqrt{2}$B.$\sqrt{41}$C.$3\sqrt{2}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn),
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1

查看答案和解析>>

同步練習(xí)冊答案