如圖,在四棱錐中,四邊形是菱形,,的中點.

(1)求證:;  (2)求證:平面平面.
(1)要證明線面平行,則可以根據(jù)線面平行的判定定理來證明。
(2)對于面面垂直的證明,要根據(jù)已知中的菱形的對角線垂直,以及來加以證明。

試題分析:(1)證明:設(shè),連接EO,因為O,E分別是BD,PB的中點,所以  4分
,所以    7分
(2)連接PO,因為,所以,又四邊形是菱形,所以  10分
,,,所以   13分
,所以面    14分
點評:解決的關(guān)鍵是根據(jù)線面垂直和面面垂直的判定定理來證明,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

正方體的棱線長為1,線段上有兩個動點E,F(xiàn),且,則三棱錐的體積為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,,,且,E、F分別為線段CD、AB上的點,且.將梯形沿EF折起,使得平面平面BCEF,折后BD與平面ADEF所成角正切值為

(Ⅰ)求證:平面BDE;
(Ⅱ)求平面BCEF與平面ABD所成二面角(銳角)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正方體中,,分別是棱的中點,則與平面所成的角的大小是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,平面,底面是菱形,,

(Ⅰ)求證:
(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分13分)
如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點,D為PB中點,且△PMB為正三角形.

(1)求證:DM∥平面APC;
(2)求證:平面ABC⊥平面APC;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正三棱(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知經(jīng)過同一點的N個平面,任意三個平面不經(jīng)過同一條直線.若這個平面將空間分成個部分,則                        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共12分)
在如圖的多面體中,⊥平面,,,,,,   的中點.

(Ⅰ)求證:平面;
(Ⅱ)求證:

查看答案和解析>>

同步練習(xí)冊答案