若有一段演繹推理:“大前提:對(duì)任意實(shí)數(shù)a,都有.小前提:已知a=-2為實(shí)數(shù).結(jié)論:.”這個(gè)結(jié)論顯然錯(cuò)誤,是因?yàn)? ).
A.大前提錯(cuò)誤 B.小前提錯(cuò)誤
C.推理形式錯(cuò)誤 D.非以上錯(cuò)誤
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
的圖象如圖所示,為得到的
的圖象,可以將的圖象 ( )
A.向右平移個(gè)單位長(zhǎng)度
B.向右平移個(gè)單位長(zhǎng)度
C.向左平移個(gè)單位長(zhǎng)度
D.向左平移個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
有這樣一個(gè)游戲項(xiàng)目:甲箱子里裝有個(gè)白球,個(gè)黑球和1個(gè)紅球.乙箱子里裝有2 個(gè)白球,1個(gè)黑球和2個(gè)紅球.這些球除顏色外完全相同.每次游戲從這兩個(gè)箱子里各隨機(jī)摸出3個(gè)球,若摸出的6個(gè)球中白球個(gè)數(shù)比黑球多,黑球的個(gè)數(shù)比紅球多,則獲獎(jiǎng). (每次游戲結(jié)束后將球放回原箱)
(Ⅰ)求在次游戲中,摸出個(gè)白球,2個(gè)黑球,1個(gè)紅球的概率;
(Ⅱ)設(shè)在次游戲中獲獎(jiǎng)次數(shù)為,求數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
對(duì)變量x,y有觀測(cè)值(xi,yi)(i=1,2,…,10),得散點(diǎn)圖①;對(duì)變量u,v有觀測(cè)數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點(diǎn)圖②.由這兩個(gè)散點(diǎn)圖可以判斷( )
A.變量x與y正相關(guān),u與v正相關(guān)
B.變量x與y正相關(guān),u與v負(fù)相關(guān)
C.變量x與y負(fù)相關(guān),u與v正相關(guān)
D.變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):
①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°
④sin2(-18°)+cos248°-sin(-18°)cos48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos55°.
(1)試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù);
(2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知的對(duì)稱(chēng)中心為,記函數(shù)的導(dǎo)函數(shù)為,的導(dǎo)函數(shù)為,則有.若函數(shù)= –,則可求得+++=( )
–4025 –8050 8050
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com