7.如圖是利用我國古代數(shù)學(xué)家劉徽的割圓術(shù)設(shè)計的程序框圖,則輸出的n值為(  )
參考數(shù)據(jù):$\sqrt{3}$≈1.732,sin15°≈0.2588,sin7.5°≈0.1305.
A.12B.24C.48D.96

分析 列出循環(huán)過程中S與n的數(shù)值,滿足判斷框的條件即可結(jié)束循環(huán).

解答 解:模擬執(zhí)行程序,可得:
n=6,S=3sin60°=$\frac{3\sqrt{3}}{2}$,
不滿足條件S≥3.10,n=12,S=6×sin30°=3,
不滿足條件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,
滿足條件S≥3.10,退出循環(huán),輸出n的值為24.
故選:B.

點評 本題考查循環(huán)框圖的應(yīng)用,考查了計算能力,注意判斷框的條件的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=lg(2x-1)的定義域是( 。
A.(1,2)B.$({\frac{1}{2},1})∪({1,+∞})$C.$({\frac{1}{2},+∞})$D.$({\frac{1}{2},2})∪({2,+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在${(\root{3}{x}-\frac{1}{x})^n}$的展開式中,所有項的二項式系數(shù)之和為4096,則其常數(shù)項為( 。
A.-110B.-220C.220D.110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知tan(π+α)=2,則cos2α+sin2α=$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)f(x)=xex,g(x)=$\frac{1}{2}$x2+x.
(1)令F(x)=f(x)+g(x),求F(x)的最小值;
(2)若任意x1,x2∈[-1,+∞)且x1>x2有m[f(x1)-f(x2)]>g(x1)-g(x2)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某校為提高學(xué)生身體素質(zhì)決定對全校高三900名學(xué)生,分三批次進行身體素質(zhì)測試,在三個批次中男、女學(xué)生數(shù)如下表所示,已知在全體學(xué)生中隨機抽取1名,抽到第二批次中女學(xué)生的概率是0.16.
 第一批次 第二批次 第三批次
女同學(xué)  196 x y
 男同學(xué) 204 156z
(Ⅰ)求x的值;
(Ⅱ)已知y≥96,z≥96,求第三批次中女同學(xué)比男同學(xué)多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義在R上的函數(shù)f(x)滿足f(x+2)=$\frac{1}{2}$f(x),當x∈[0,2]時,f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-2x,0≤x<1}\\{{-2}^{1-|x-\frac{3}{2}|,1≤x<2}}\end{array}\right.$,函數(shù)g(x)=x3+3x2+m.若對任意s∈[-4,-2),存在t∈[-4,-2),不等式f(s)-g(t)≥0成立,則實數(shù)m的取值范圍是(  )
A.(-∞,-12]B.(-∞,14]C.(-∞,-8]D.(-∞,$\frac{31}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知當x=θ時,函數(shù)f(x)=2sinx-cosx取得最大值,則sin(2θ+$\frac{π}{4}$)=( 。
A.$\frac{7\sqrt{2}}{10}$B.$\frac{\sqrt{2}}{10}$C.-$\frac{\sqrt{2}}{10}$D.-$\frac{7\sqrt{2}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在空間直角坐標系中,點M(-2,2,1)與點N(4,-3,1-$\sqrt{3}$)的距離是8.

查看答案和解析>>

同步練習(xí)冊答案