19.定義在R上的函數(shù)f(x)滿足f(x+2)=$\frac{1}{2}$f(x),當(dāng)x∈[0,2]時,f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-2x,0≤x<1}\\{{-2}^{1-|x-\frac{3}{2}|,1≤x<2}}\end{array}\right.$,函數(shù)g(x)=x3+3x2+m.若對任意s∈[-4,-2),存在t∈[-4,-2),不等式f(s)-g(t)≥0成立,則實數(shù)m的取值范圍是(  )
A.(-∞,-12]B.(-∞,14]C.(-∞,-8]D.(-∞,$\frac{31}{2}$]

分析 對任意s∈[-4,-2),存在t∈[-4,-2),不等式f(s)-g(t)≥0成立,等價于:f(s)min≥g(t)min.利用分段函數(shù)的性質(zhì)可得f(s)min,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值可得g(t)min

解答 解:對任意s∈[-4,-2),存在t∈[-4,-2),不等式f(s)-g(t)≥0成立,
等價于:f(s)min≥g(t)min
定義在R上的函數(shù)f(x)滿足f(x+2)=$\frac{1}{2}$f(x),
當(dāng)x∈[0,2]時,f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-2x,0≤x<1}\\{{-2}^{1-|x-\frac{3}{2}|,1≤x<2}}\end{array}\right.$,
∴x∈[0,2],f(0)=$\frac{1}{2}$為最大值,
∵f(x+2)=$\frac{1}{2}$f(x),
∴f(x)=2f(x+2),
∵x∈[-2,0],
∴f(-2)=2f(0)=2×$\frac{1}{2}$=1,
∵x∈[-4,-2],
∴f(-4)=2f(-2)=2×1=2,
∵?s∈[-4,2),
∴f(s)=2,
∵f(x)=2f(x+2),
x∈[-2,0],
∴f(-$\frac{1}{2}$)=2f( $\frac{3}{2}$)=2×(-2)=-4,
∵x∈[-4,-3],
∴f(-$\frac{5}{2}$)=2f(-$\frac{1}{2}$)=-8,
∵?s∈[-4,2),
∴f(s)=-8,
∵函數(shù)g(x)=x3+3x2+m,
∴g′(x)=3x2+6x,
3x2+6x>0,x>0,x<-2,
3x2+6x<0,-2<x<0,
3x2+6x=0,x=0,x=-2,
∴函數(shù)g(x)=x3+3x2+m,在(-∞,-2)(0,+∞)單調(diào)遞增.
在(-2,0)單調(diào)遞減,
∴?t∈[-4,-2),g(t)=g(-2)=4+m,
g(t)=g(-4)=m-16,
∵不等式f(s)-g(t)≥0,
∴-8≥m-16,
故實數(shù)滿足:m≤8,
故選:C.

點評 本題考查了分段函數(shù)的性質(zhì)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、等價轉(zhuǎn)化方法,考查了推理能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等比數(shù)列{an},a1=2,a4=16
(1)求數(shù)列{an}的通項公式.
(2)求S10的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某單位N名員工參加“我愛閱讀”活動,他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35).第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.
下面是年齡的分布表
 區(qū)間[25,30)[30,35)[35,40)[40,45)[45,50)
 人數(shù) 28 a b  
(1)求正整數(shù)a、b、N的值;
(2)現(xiàn)要從年齡低于40歲的員工中用分層抽樣的方法抽取42人,則年齡在第1、2、3組的員工人數(shù)分別是多少?
(3)為了估計該單位員工的閱讀習(xí)慣,對第1、2、3組中抽出的42人是否喜歡閱讀國學(xué)類書籍進行了調(diào)查,調(diào)查結(jié)果如表所示:(單位:人)
 喜歡閱讀國學(xué)類  不喜歡閱讀國學(xué)類 合計
 男 16 4 20
 女 8 14 22
 合計 24 18 42
根據(jù)表中數(shù)據(jù),能否在犯錯誤的概率不超過0.5%的前提下認為該單位員工“是否喜歡閱讀國學(xué)類書籍和性別有關(guān)系”?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k00.05 0.025 0.010 0.005 0.001 
 k0 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖是利用我國古代數(shù)學(xué)家劉徽的割圓術(shù)設(shè)計的程序框圖,則輸出的n值為( 。
參考數(shù)據(jù):$\sqrt{3}$≈1.732,sin15°≈0.2588,sin7.5°≈0.1305.
A.12B.24C.48D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式組$\left\{\begin{array}{l}{2x-y+1≥0}\\{x-2y+2≤0}\\{x+y-4≤0}\end{array}\right.$的解集記作D,實數(shù)x,y滿足如下兩個條件:①?(x,y)∈D,y≥ax;②?(x,y)∈D,x-y≤a.則實數(shù)a的取值范圍為[-2,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知正項數(shù)列{an}的前n項和為Sn,且4Sn=(an+1)2(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=2n•an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.從集合{1,2,3,4}中任取兩個不同的數(shù),則這兩個數(shù)的和為3的倍數(shù)的槪率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,若a=2$\sqrt{3}$,C=$\frac{π}{3}$,tanA=$\frac{3}{4}$,則sinA=$\frac{3}{5}$,b=4+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}為等比數(shù)列,Sn是它的前n項和,設(shè)Tn=S1+S2+…+Sn,若a2•a3=2a1,且a4與2a7的等差中項為$\frac{5}{4}$,則T4=98.

查看答案和解析>>

同步練習(xí)冊答案