3.為了研究高中學(xué)生對(duì)鄉(xiāng)村音樂的態(tài)度(喜歡與不喜歡兩種態(tài)度)與性別的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),計(jì)算得K2=8.01,則認(rèn)為“喜歡鄉(xiāng)村音樂與性別有關(guān)”的把握約為( 。
P(K2≥k00.100.050.250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
A.0.1%B.1%C.99.5%D.99.9%

分析 根據(jù)觀測(cè)值K2=8.01>7.879,對(duì)照臨界值表即可得出結(jié)論.

解答 解:根據(jù)觀測(cè)值K2=8.01>7.879,
所以在犯錯(cuò)誤的概率不超過0.005的前提下
認(rèn)為喜歡鄉(xiāng)村音樂與性別有關(guān),
即有99.5%的把握認(rèn)為喜歡鄉(xiāng)村音樂與性別有關(guān).
故選:C.

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若曲線y=x2+ax+b在點(diǎn)(0,b)處的切線方程是3x-y+1=0,則( 。
A.a=-3,b=1B.a=3,b=1C.a=-3,b=-1D.a=3,b=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.來自英、法、日、德的甲、乙、丙、丁四位客人,剛好碰在一起,他們除懂本國語言外,每天還會(huì)說其他三國語言的一種,有一種語言是三人都會(huì)說的,但沒有一種語言人人都懂,現(xiàn)知道:
①甲是日本人,丁不會(huì)說日語,但他倆都能自由交談;
②四人中沒有一個(gè)人既能用日語交談,又能用法語交談;
③甲、乙、丙、丁交談時(shí),找不到共同語言溝通;
④乙不會(huì)說英語,當(dāng)甲與丙交談時(shí),他都能做翻譯.針對(duì)他們懂的語言
正確的推理是(  )
A.甲日德、乙法德、丙英法、丁英德B.甲日英、乙日德、丙德法、丁日英
C.甲日德、乙法德、丙英德、丁英德D.甲日法、乙英德、丙法德、丁法英

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.x>0,y>0,x+y-xy+1=0,求x+2y的取小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知F1(-1,0),F(xiàn)2(1,0)分別是橢圓G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn),點(diǎn)P在橢圓上,且PF2⊥F1F2,|PF1|-|PF2|=$\frac{a}{2}$.
(1)求橢圓G方程;
(2)若點(diǎn)B是橢圓G的是上頂點(diǎn),過F2的直線l與橢圓G交于不同的兩點(diǎn)M,N,是否存在直線l,使得△BF2M與△BF2N的面積的比值為2?如果存在,求出直線l的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)$f(x)=\frac{{2-\sqrt{2}sin\frac{π}{4}x}}{{{x^2}+4x+5}}({-4≤x≤0})$,則f(x)的最大值為2+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若$\int_1^a{(2x+\frac{1}{x})}dx$=ln3+8,則a的值是( 。
A.6B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=tanωx(ω>0)的圖象上的相鄰兩支曲線截直線y=1所得的線段長為$\frac{π}{3}$.則ω的值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在平行四邊形ABCD中,AB=2,BC=$\sqrt{2}$,∠DAB=45°,點(diǎn)E為BC的中點(diǎn),$\overrightarrow{FC}$=3$\overrightarrow{DF}$,則$\overrightarrow{AE}$•$\overrightarrow{BF}$的值是( 。
A.-1B.-$\frac{4}{3}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案