【題目】若直線是異面直線,在平面內(nèi),在平面內(nèi),是平面與平面的交線,則下列結(jié)論正確的是( )

A. 至少與,中的一條相交 B. 都不相交

C. ,都相交 D. 至多與中的一條相交

【答案】A

【解析】分析:可以畫出圖形來說明的位置關(guān)系,從而可判斷出B,C,D是錯誤的,而對于A,可假設不正確,這樣便和都不相交,這樣可推出異面矛盾,這樣便說明A正確.

詳解對于A,“至少與,中的一條相交”正確假如,都不相交,

,都共面,

,都平行,

共面,這樣便不符合已知的異面,

故A正確;

對于B,,可以相交,如圖:

B錯誤;

對于C,可以和,中的一個平行,如上圖,故C錯誤;

對于D,可以和,都相交,如圖:

D錯誤.
故選:A.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求證:函數(shù)在(1,+∞)上是增函數(shù);

(Ⅱ)求函數(shù)[1,e]上的最小值及相應的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖三角形PDC所在的平面與長方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.ECD邊的中點,F,G分別在線段AB,BC,AF=2FB,CG=2GB.

(1)證明:PE⊥FG;

(2)求二面角PADC的正切值;

(3)求直線PA與直線FG所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)f(x)=(x+l)lnx﹣ax+a (a為正實數(shù),且為常數(shù))
(1)若f(x)在(0,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某基地蔬菜大棚采用水培、無土栽培方式種植各類蔬菜.過去50周的資料顯示,該地周光照量(小時)都在30小時以上,其中不足50小時的周數(shù)有5周,不低于50小時且不超過70小時的周數(shù)有35周,超過70小時的周數(shù)有10周.根據(jù)統(tǒng)計,該基地的西紅柿增加量(百斤)與使用某種液體肥料(千克)之間對應數(shù)據(jù)為如圖所示的折線圖.

(1)依據(jù)數(shù)據(jù)的折線圖,是否可用線性回歸模型擬合的關(guān)系?請計算相關(guān)系數(shù)并加以說明(精確到0.01).,則線性相關(guān)程度很高,可用線性回歸模型擬合)

(2)蔬菜大棚對光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀最多可運行臺數(shù)受周光照量限制,并有如下關(guān)系:

周光照量(單位:小時)

光照控制儀最多可運行臺數(shù)

3

2

1

若某臺光照控制儀運行,則該臺光照控制儀周利潤為3000元;若某臺光照控制儀未運行,則該臺光照控制儀周虧損1000元.若商家安裝了3臺光照控制儀,求商家在過去50周周總利潤的平均值.

附:相關(guān)系數(shù)公式,參考數(shù)據(jù),

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】全網(wǎng)傳播的融合指數(shù)是衡量電視媒體在中國網(wǎng)民中影響力的綜合指標,根據(jù)相關(guān)報道提供的全網(wǎng)傳播2017年某全國性大型活動的省級衛(wèi)視新聞臺融合指數(shù)的數(shù)據(jù),對名列前20名的省級衛(wèi)視新聞臺的融合指數(shù)進行分組統(tǒng)計,結(jié)果如表所示.

組號

分組

頻數(shù)

1

2

2

8

3

7

4

3

(1)根據(jù)分組統(tǒng)計表求這20省級衛(wèi)視新聞臺的融合指數(shù)的平均數(shù);

(2)現(xiàn)從融合指數(shù)在內(nèi)的省級衛(wèi)視新聞臺中隨機抽取2家進行調(diào)研,求至少有1家的融合指數(shù)在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了實現(xiàn)綠色發(fā)展,避免浪費能源,耨市政府計劃對居民用電采用階梯收費的方法.為此,相關(guān)部門在該市隨機調(diào)查了20戶居民六月份的用電量(單位和家庭收入(單位:萬元),以了解這個城市家庭用電量的情況

用電量數(shù)據(jù)如下:18,63,72,82,93,98,106,110,118,130,134,139,147,163,180,194,212,237,260,324.

對應的家庭收入數(shù)據(jù)如下:0.21,0.24,0.35,0.40,0.52,0.60,0.58,0.65,0.65,0.63,0.68,0.80,0.83,0.93,0.97,0.96,1.1,1.2,1.5,1.8.

(1)根據(jù)國家發(fā)改委的指示精神,該市計劃實施3階階梯電價,使75%的用戶在第一檔,電價為0.56元/;的用戶在第二檔,電價為0.61元/的用戶在第三檔,電價為0.86元/;試求出居民用電費用與用電量間的函數(shù)關(guān)系式;

(2)以家庭收入為橫坐標,電量為縱坐標作出散點圖(如圖)關(guān)于的回歸直線方程(回歸直線方程的系數(shù)四舍五入保留整數(shù))

(3)小明家的月收入7000元,按上述關(guān)系,估計小明家月支出電費多少元?

參考數(shù)據(jù),,,

參考公式一組相關(guān)數(shù)據(jù)的回歸直線方程的斜率和截距的最小二乘法估計分別為,,其中為樣本均值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為 1, 的中點, 為線段上的動點,過點A、P、Q的平面截該正方體所得的截面記為.則下列命題正確的是__________(寫出所有正確命題的編號).

①當時, 為四邊形;②當時, 為等腰梯形;③當時, 為六邊形;④當時, 的面積為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱中, 分別是棱、的中點,點在棱上,已知, ,

(1)求證: 平面;

(2)設點在棱上,當為何值時,平面平面

查看答案和解析>>

同步練習冊答案