20.曲線y=x2+$\frac{1}{x}$在點(1,2)處的切線方程為x-y+1=0.

分析 求出函數(shù)的導(dǎo)數(shù),求出切線的斜率,利用點斜式求解切線方程即可.

解答 解:曲線y=x2+$\frac{1}{x}$,可得y′=2x-$\frac{1}{{x}^{2}}$,
切線的斜率為:k=2-1=1.
切線方程為:y-2=x-1,即:x-y+1=0.
故答案為:x-y+1=0.

點評 本題考查切線方程的求法,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an},a2=2,an+an+1=3n,n∈N*,則a2+a4+a6+a8+a10+a12=57.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知cosx=$\frac{3}{4}$,則cos2x=( 。
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-$\frac{1}{8}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,則函數(shù)y=f(x)的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列各式的運算結(jié)果為純虛數(shù)的是( 。
A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|則(  )
A.$\overrightarrow{a}$⊥$\overrightarrow$B.|$\overrightarrow{a}$|=|$\overrightarrow$|C.$\overrightarrow{a}$∥$\overrightarrow$D.|$\overrightarrow{a}$|>|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知集合A={1,2},B={a,a2+3}.若A∩B={1},則實數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.復(fù)平面內(nèi)表示復(fù)數(shù)z=i(-2+i)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知極坐標(biāo)系的極點在直角坐標(biāo)系的原點O,極軸與x軸非負(fù)半軸重合,曲線C1:ρsin2θ=4cosθ,C2:$\left\{\begin{array}{l}{x=1+tcosθ}\\{y=tsinθ}\end{array}\right.$(t為參數(shù)),相交于A,B兩點,若△AOB的面積為$\sqrt{6}$,則|AB|=6.

查看答案和解析>>

同步練習(xí)冊答案