10.已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)O,極軸與x軸非負(fù)半軸重合,曲線C1:ρsin2θ=4cosθ,C2:$\left\{\begin{array}{l}{x=1+tcosθ}\\{y=tsinθ}\end{array}\right.$(t為參數(shù)),相交于A,B兩點(diǎn),若△AOB的面積為$\sqrt{6}$,則|AB|=6.

分析 求出曲線C1的直角坐標(biāo)方程,把C2的參數(shù)方程代入C1得出弦長公式,根據(jù)三角形的面積公式列方程求出sinθ,從而可得|AB|的長.

解答 解:曲線C1的方程可化為ρ2sin2θ=4ρcosθ,即y2=4x,
把曲線C2的參數(shù)方程代入y2=4x得t2sin2θ=4+4tcosθ,即t2sin2θ-4tcosθ-4=0,
∴t1+t2=$\frac{4cosθ}{si{n}^{2}θ}$,t1t2=$\frac{-4}{si{n}^{2}θ}$,
∴|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\frac{4}{si{n}^{2}θ}$,
∴S△AOB=$\frac{1}{2}×1×|AB|sinθ$=$\frac{2}{sinθ}$=$\sqrt{6}$,
∴sinθ=$\frac{\sqrt{6}}{3}$.
∴|AB|=$\frac{4}{si{n}^{2}θ}$=6.
故答案為:6.

點(diǎn)評 本題考查了極坐標(biāo)與參數(shù)方程,參數(shù)的幾何意義,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.曲線y=x2+$\frac{1}{x}$在點(diǎn)(1,2)處的切線方程為x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如果一扇形的弧長變?yōu)樵瓉淼?\frac{3}{2}$倍,半徑變?yōu)樵瓉淼囊话,則該扇形的面積為原扇形面積的$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知復(fù)數(shù)z滿足z(1+i)=2i,則z的共軛復(fù)數(shù)$\overline{z}$等于( 。
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知半徑為120mm的圓上,有一條弧的長是144mm,則該弧所對的圓心角的弧度數(shù)為1.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.給出下列三個(gè)命題:
①若回歸直線的斜率估計(jì)值是1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程是$\widehaty=1.23x+0.08$;
②若偶函數(shù)f(x)(x∈R)滿足f(x+1)=-f(x),且x∈[0,1]時(shí),f(x)=x,則方程f(x)=log3|x|有3個(gè)根;
③已知函數(shù)f(x)=($\frac{3}{2}$)x-sinx-1在[0,+∞)內(nèi)只有兩個(gè)零點(diǎn).
正確命題的序號是①③(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知隨機(jī)變量ξi滿足P(ξi=1)=pi,P(ξi=0)=1-pi,i=1,2.若0<p1<p2<$\frac{1}{2}$,則( 。
A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3cosθ}\\{y=sinθ}\end{array}\right.$,(θ為參數(shù)),直線l的參數(shù)方程為 $\left\{\begin{array}{l}{x=a+4t}\\{y=1-t}\end{array}\right.$,(t為參數(shù)).
(1)若a=-1,求C與l的交點(diǎn)坐標(biāo);
(2)若C上的點(diǎn)到l距離的最大值為$\sqrt{17}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,正方形ABCD內(nèi)的圖形來自中國古代的太極圖.正方形內(nèi)切圓中的黑色部分和白色部分關(guān)于正方形的中心成中心對稱.在正方形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自黑色部分的概率是( 。
A.$\frac{1}{4}$B.$\frac{π}{8}$C.$\frac{1}{2}$D.$\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊答案